467
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A detailed chemical kinetic model of high-temperature ethylene glycol gasification

, , &
Pages 517-535 | Received 18 Aug 2010, Accepted 08 Dec 2010, Published online: 31 Jan 2011

References

  • Henrich , E. , Dahmen , N. , Raffelt , K. , Stahl , R. and Weirich , F. 29–31 August 2007 . “ The Karlsruhe ‘bioliq’ process for biomass gasification ” . In Second European Summer School on Renewable Motor Fuels , 29–31 August , Poland : Warsaw .
  • Kolb , T. , Jakobs , T. and Zarzalis , N. 7–10 July 2009 . Syngas from biomass-based slurry entrained flow gasification , 7–10 July , Lisbon, , Portugal : Tenth Conference on Energy for a Clean Environment (Clean Air) .
  • Heghes , C. 2006 . C1–C4 hydrocarbon oxidation mechanism , Ph.D. diss, Heidelberg University .
  • Evans , M. G. and Polanyi , M. 1938 . Inertia and driving force of chemical reactions . Trans. Faraday Soc. , 34 : 11 – 24 .
  • Gilbert , R. G. , Luther , K. and Troe , J. 1983 . Theory of unimolecular reactions in the fall-off range . Ber. Bunsenges. Phys. Chem. , 87 : 169 – 177 .
  • Marinov , N. M. 1999 . A detailed chemical kinetic model for high temperature ethanol oxidation . Int. J. Chem. Kinet. , 31 ( 3 ) : 183 – 220 .
  • Kee , R. J. , Rupley , F. M. and Miller , J. A. 1994 . Chemkin thermodynamic data base , Report No. SAND89-8009B, Sandia National Laboratories .
  • Goos , E. , Burcat , A. and Ruscic , B. 15 June 2010 . Ideal gas thermochemical database with updates from active thermochemical tables 15 June , Available at http://garfield.chem.elte.hu/Burcat/burcat.html
  • Susnow , R. G. , Dean , A. M. , Green , W. H. , Peczak , P. and Broadbelt , L. J. 1997 . Rate-based construction of kinetic models for complex systems . J. Phys. Chem. A , 101 : 3731 – 3740 .
  • De Witt , M. J. , Dooling , D. J. and Broadbelt , L. J. 2000 . Computer generation of reaction mechanisms using quantitative rate information: Application to long-chain hydrocarbon pyrolysis . Ind. Eng. Chem. Res. , 39 : 2228 – 2237 .
  • Maas , U. 1988 . Mathematische Modellierung instationärer Verbrennungsprozesse unter Verwendung detaillierter Reaktionsmechanismen , Ph.D. diss., Heidelberg University .
  • Petzold , L. R. 1982 . A description of DASSL: A differential/algebraic sytem solver , Report No. SAND82-8637, Sandia National Laboratories .
  • Deuflhard , P. , Hairer , E. and Zugck , J. 1987 . One step and extrapolation methods for differential-algebraic systems . Numer. Math. , 51 : 501 – 516 .
  • Warnatz , J. 1978 . Calculation of the structure of laminar flat flames I: Flame velocity of freely propagating ozone decomposition flames . Ber. Bunsenges. Phys. Chem. , 82 : 193 – 200 .
  • Warnatz , J. , Maas , U. and Dibble , R. W. 2006 . Combustion , Heidelberg : Springer-Verlag .
  • Shih , T. H. , Liou , W. W. , Shabbir , A. , Yang , Z. and Zhu , J. 1995 . A new k-ϵ eddy viscosity model for high reynolds number turbulent flows . Comput. Fluids , 24 ( 3 ) : 227 – 238 .
  • Magnussen , B. F. 1981 . On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow , Nineteenth AIAA Meeting .
  • ANSYS FLUENT 12.0 . 2009 . “ Theory Guide ” .
  • Pope , S. B. 1997 . Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation . Combust. Theor. Model. , 1 : 41 – 63 .
  • Fiveland , W. A. 1987 . Discrete ordinate methods for radiative heat transfer in isotropically and anisotropically scattering media . J. Heat Transfer , 109 : 807 – 812 .
  • Dagaut , P. , Reuillon , M. , Voisin , D. , Cathonnet , M. , McGuinness , M. and Simmie , J. M. 1995 . Acetaldehyde oxidation in a JSR and ignition in shock waves: Experimental and comprehensive kinetic modeling . Combust. Sci. Technol. , 107 : 301 – 316 .
  • Gibbs , G. J. and Calcote , H. F. 1959 . Effect of molecular structure on burning velocity . J. Chem. Eng. Data , 4 ( 3 ) : 226 – 237 .
  • Chevalier , C. 1993 . Entwicklung eines detaillierten Reaktionsmechanismus zur Modellierung der Verbrennungsprozesse von Kohlenwasserstoffen bei Hoch- und Niedertemperaturbedingungen , Ph.D. diss, Stuttgart University .
  • Karbach , V. 1997 . Aktualisierung und Validierung eines detaillierten Reaktionsmechanismus zur Oxidation von Kohlenwasserstoffen bei hohen Temperaturen , Diploma Thesis, Heidelberg University .
  • Nehse , M. 2001 . Automatische Erstellung von detaillierten Reaktionsmechanismen zur Modellierung der Selbstzündung und laminarer Vormischflammen von gasförmigen Kohlenwasserstoff-Mischungen , Ph.D. diss, Heidelberg University .
  • Natarajan , K. and Bhaskaran , K. A. 1981 . An experimental and analytical investigation of high temperature ignition of ethanol in Thirteenth International Shock Tube Symposium . Niagara Falls , : 834 – 842 .
  • Dunphy , M. P. , Patterson , P. M. and Simmie , J. M. 1991 . High-temperature oxidation of ethanol. Part 2. Kinetic modeling . J. Chem. Soc. Faraday Trans. , 87 : 2549 – 2559 .
  • Gülder , Ö. L. 1982 . Laminar burning velocities of methanol, ethanol and isooctane–air mixtures . in Nineteenth Symposium (International) on Combustion, The Combustion Institute . 1982 . pp. 275 – 281 .
  • Egolfopoulos , F. N. , Du , D. X. and Law , C. K. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes . in Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute . pp. 833 – 841 .
  • Veloo , P. S. , Wang , Y. L. , Egolfopoulos , F. N. and Westbrook , C. K. 2010 . A comparative experimental and computational study of methanol, ethanol and n-butanol flames . Cumbust. Flame , 157 : 1989 – 2004 .
  • Aboussi , B. 1991 . Étude expérimentale et modélisation de l’oxydation de l’éthanol , Ph.D. diss, University of Orleans .
  • Dagaut , P. , Boettner , J. C. and Cathonnet , M. 1992 . Kinetic modeling of ethanol pyrolysis and combustion . Journal Chemie Physie et Physico-chemie Biologique , 89 : 867 – 884 .
  • Cooke , D. F. , Dodson , M. G. and Williams , A. 1971 . A shock-tube study of the ignition of methanol and ethanol with oxygen . Combust. Flame , 16 : 233 – 236 .
  • Suzuki , A. , Inomata , T. , Jinno , H. and Moriwaki , T. 1991 . Effect of Bromotrifluoromethane on the ignition in methane and ethane–oxygen–argon mixtures behind shock waves . Bull. Chem. Soc. Jpn. , 64 : 3345 – 3354 .
  • Tsuboi , T. and Wagner , H. G. 1975 . Homogeneous thermal oxidation of methane in reflected shock waves . Proc. Combust. Inst. , 15 : 883 – 890 .
  • van Maaren , A. and de Goey , L. P.H. 1994 . Strech and the adiabatic burning velocity of methane- and propane-air flames . Combust. Sci. Technol. , 102 : 309 – 314 .
  • Egolfopoulos , F. N. , Zhu , D. L. and Law , C. K. Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen . in Twenty-Third Symposium (International) on Combustion, The Combustion Institute . pp. 471 – 478 .
  • Vagelopoulos , C. M. and Egolfopoulos , F. N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air . in Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute . pp. 1317 – 1323 .
  • D’Onofrio , E. J. 1979 . Cool flame and autoignition in glycols . Loss Prevent. , 13 : 89 – 97 .
  • Egolfopoulos , F. N. , Cho , P. and Law , C. K. 1989 . Laminar flame speeds of methane/air mixtures under reduced and elevated pressures . Combust. Flame , 76 : 375 – 391 .
  • Rashidi , A. , Eberhard , M. and Riedel , U. 2010 . CFD simulation of gasification process with ethylene glycol as model substance for biomass based pyrolysis oil . Int. J. Energy for a Clean Environment , submitted

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.