404
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

A posteriori testing of the flame surface density transport equation for LES

, , &
Pages 32-64 | Received 22 Feb 2013, Accepted 14 Sep 2013, Published online: 05 Dec 2013

References

  • H. Pitsch and H. Duchamp de Lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proc. Combust. Inst. 29 (2002), pp. 2001–2008.
  • M. Düsing, A. Kempf, F. Flemming, A. Sadiki, and J. Janicka, Combustion LES for premixed and diffusion flames, Prog. Comput. Fluid Dynam. 7 (2005), pp. 363–374.
  • M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, Direct numerical simulation anaylsis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Proc. Combust. Inst. 27 (1998), pp. 917–925.
  • C. Fureby, A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion, Proc. Combust. Inst. 30 (2005), pp. 593–601.
  • E. Hawkes and R. Cant, A flame surface density approach to large eddy simulation of premixed turbulent combustion, Proc. Combust. Inst. 28 (2000), pp. 51–58.
  • F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion – Part I: Non-dynamic formulation and initial tests, Combust. Flame 131 (2002), pp. 159–180.
  • O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000), pp. 1843–1863.
  • T. Broeckhoven, M. Freitag, C. Lacor, A. Sadiki, and J. Janicka, Investigation of subgrid scale wrinkling models and their impact on the artificially thickened flame model in large eddy simulations, in Complex Effects in Large Eddy Simulations, S.C. Kassinos, C.A. Langer, G. Iaccarino, and P. Moin, eds., Springer-Verlag, Berlin, 2007, pp. 353–369.
  • S. Roux, G. Lartigue, T. Poinsot, U. Meier, and C. Bérat, Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combust. Flame 141(1–2) (2005), pp. 40–54.
  • N. Chakraborty and M. Klein, A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation, Phys. Fluids 20 (2008), . 085108. Available at http://dx.doi.org/10.1063/1.2969474.
  • M. Katragadda, N. Chakraborty, and R. Cant, A priori assessment of algebraic flame surface density models in the context of large eddy simulation for nonunity Lewis number flames in the thin reaction zones regime, J. Combust. 2012 (2012), . 794671. Available at http://dx.doi.org/10.1155/2012/794671.
  • N. Aluri, S. Muppala, and F. Dinkelacker, Large-eddy simulation of lean premixed turbulent flames of three different combustion configurations using a novel reaction closure, Flow Turb. Combust. 80 (2008), pp. 207–224.
  • F. Cavallo Marincola, T. Ma, and A. Kempf, Large eddy simulations of the Darmstadt turbulent stratified flame series, Proc. Combust. Inst. 34 (2013), pp. 1307–1315.
  • C. Duwig and C. Fureby, Large eddy simulation of unsteady lean stratified premixed combustion, Combust. Flame 151 (2007), pp. 85–103.
  • B. Manickam, J. Franke, S. Muppala, and F. Dinkelacker, Large-eddy simulation of triangular-stabilized lean premixed turbulent flames: Quality and error assessment, Flow Turb. Combust. 88 (2012), pp. 563–596.
  • C. Angelberger, D. Veynante, F. Egolfopoulos, and T. Poinsot, Large eddy simulations of combustion instabilities in premixed flamesProceedings of the 1998 Summer Program, Center for Turbulence Research, NASA Ames/Stanford University, Stanford, CA, 1998, pp. 61–82. Available at http://ctr.stanford.edu/ctrsp98/angelberger.pdf.
  • C. Nottin, R. Knikker, M. Boger, and D. Veynante, Large eddy simulation of an acoustically excited turbulent premixed flame, Proc. Combust. Inst. 28 (2000), pp. 67–73.
  • L. Selle, G. Lartigue, T. Poinsot, R. Koch, K. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, and D. Veynante., Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Combust. Flame 137 (2004), pp. 489–505.
  • A. De and S. AcharyaLarge eddy simulation of premixed combustion with a thickened-flame approach, J. Engng – Gas Turbines & Power 131 (2009. 061501. Available at http://dx.doi.org/10.1115/1.3094021.
  • E. Hawkes and R. Cant, Implications of a flame surface density approach to large eddy simulation of turbulent premixed combustion, Combust. Flame 126 (2001), pp. 1617–1629.
  • R. Knikker, D. Veynante, and C. Meneveau, A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion, Phys. Fluids 16 (2004), pp. 91–94.
  • G. Wang, M. Boileau, D. Veynante, and K. Truffin, Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model, Combust. Flame 159 (2012), pp. 2742–2754.
  • G. Wang, M. Boileau, and D. Veynante, Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion, Combust. Flame 158 (2011), pp. 2199–2213.
  • S. Menon and W.H. Jou, Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor, Combust. Sci. Technol. 75 (1991), pp. 53–72.
  • F. Hernández-Pérez, F.T.C. Yuen, C.P.T. Groth, and Ö.L. Gülder, LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models, Proc. Combust. Inst. 33 (2011), pp. 1365–1371.
  • G. Lecocq, S. Richard, O. Colin, and L. Vervisch, Gradient and counter-gradient modeling in premixed flames: Theoretical study and application to the LES of a lean premixed turbulent swirl-burner, Combust. Sci. Technol. 182 (2010), pp. 465–479.
  • S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, and D. Veynante, Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31 (2007), pp. 3059–3066.
  • E. Hawkes, Large eddy simulation of premixed combustion, . Ph.D. diss., Cambridge University, Cambridge, UK, 2000.
  • N. Chakraborty and R. Cant, A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation, Phys. Fluids19 (2007), . 105101. Available at http://dx.doi.org/10.1063/1.2772326.
  • N. Chakraborty and R. Cant, Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation, Proc. Combust. Inst. 32 (2009), pp. 1445–1453.
  • T. Ma, O.T. Stein, N. Chakraborty, and A.M. Kempf, A posteriori testing of algebraic flame surface density models for LES, Combust. Theory Model. 17 (2013), pp. 431–482.
  • K.N.C. Bray, M. Champion, and P.A. Libby, The interaction between turbulence and chemistry in premixed turbulent flames, in Turbulent Reacting Flows, Lecture Notes in Engineering Vol. 40, R. Borghi and S. Murphy, eds., Springer, New York, 1989, pp. 541–563.
  • G. North and D. Santavicca, The fractal nature of turbulent premixed flames, Combust. Sci. Technol. 72 (1990.
  • J. Smagorinsky, General circulation experiments with the primitive equations – Part I: The basic experiment, Mon. Weather Rev. 91(3) (1963), pp. 99–164.
  • S.P. Muppala, N.K. Aluri, F. Dinkelacker, and A. Leipertz, Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa, Combust. Flame 140 (2005), pp. 257–266.
  • V. Zimont, Gas premixed combustion at high turbulence. Turbulent flame closure combustion model, Exp. Therm. Fluid. Sci. 21 (2000), pp. 179–186.
  • N. Chakraborty and S. Cant, Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration, Combust. Flame 137 (2004), pp. 129–147.
  • M. Klein, N. Chakraborty, K.W. Jenkins, and R.S. Cant, Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment, Phys. Fluids 18 (2006), . 055102. Available at http://dx.doi.org/10.1063/1.2196092.
  • N. Peters, P. Terhoeven, J.H. Chen, and T. Echekki, Statistics of flame displacement speeds from computations of 2D unsteady methane–air flames, Proc. Combust. Inst. 27 (1998), p. 833.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • S. Tullis and R. Cant, Scalar transport modeling in large eddy simulation of turbulent premixed flames, Proc. Combust. Inst. 29 (2002), pp. 2097–2104.
  • H.G. Weller, G. Tabor, A.D. Gosman, and C. Fureby, Application of a flame-wrinkling LES combustion model to a turbulent mixing layer, Proc. Combust. Inst. 27 (1998), pp. 899–907.
  • C. Meneveau and T. Poinsot, Stretching and quenching of flamelets in premixed turbulent combustion, Combust. Flame 86 (1991), pp. 311–332.
  • J.M. DuclosD. Veynante, and T. Poinsot, A comparison of flamelet models for premixed turbulent combustion, Combust. Flame 95 (1993), pp. 101–117.
  • S. Candel, D. Veynante, F. Lacas, E. Maistret, N. Darahiba, and T. Poinsot, Coherent flamelet model: Applications and recent extensions, Recent Adv. Combust. Model. 6 (1990), pp. 19–64.
  • E. Hawkes and R. Cant, Physical and numerical realizability requirements for flame surface density approaches to large-eddy and Reynolds averaged simulation of premixed turbulent combustion, Combust. Theory Model. 5 (2001), pp. 699–720.
  • R. Cant, S. Pope, and K. Bray, Modelling of flamelet surface to volume ratio in turbulent premixed combustion, Proc. Combust. Inst. 23 (1990), pp. 809–815.
  • F. Charlette, A. Trouvé, M. Boger, and D. Veynante, A flame surface density model for large eddy simulations of turbulent premixed flames, Proceedings of the Joint Meeting of the British, German and French Sections of the Combustion Institute, The Combustion Institute, Pittsburgh, PA, 1999.
  • C. Olbricht, O.T. Stein, J. Janicka, J.A. van Oijen, S. Wysocki, and A.M. Kempf, LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry, Fuel 96 (2012), pp. 100–107.
  • M.W.A. Pettit, B. Coriton, A. Gomez, and A.M. Kempf, Large-eddy simulation and experiments on non-premixed highly turbulent ‘opposed jet’ flows, Proc. Combust. Inst. 33 (2011), pp. 1391–1399.
  • O. Stein, B. Böhm, A. Dreizler, and A.M. Kempf, Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications, Flow Turb. Combust. 87 (2010), pp. 425–447.
  • A. Kempf, Large-eddy simulation of non-premixed turbulent flames, . Ph.D. diss., Technische Universität, Darmstadt, Germany, 2003.
  • R. Keppeler, M. Pfitzner, L.T.W. Chong, T. Komare, and W. Polifke, Including heat loss and quench effects in algebraic models for large eddy simulation of premixed combustionProceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, . ASME, Denmark, Copenhagen, 2012, pp. 457–467. doi:10.1115/GT2012-68689.
  • M. Klein, A. Sadiki, and J. JanickaA digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation, J. Comput. Phys. 186 (2003), pp. 652–665. . Available at http://dx.doi.org/10.1016/S0021-9991(03)00090-1.
  • A. Kempf, M. Klein, and J. Janicka, Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries, Flow Turb. Combust. 74 (2005), pp. 67–84.
  • N. Chakraborty, G. Hartung, M. Katragadda, and C.F. Kaminski, Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data, Combust. Flame 158 (2011), pp. 1372–1390.
  • O. Darbyshire, N. Swaminathan, and S. Hochgreb, The effects of small-scale mixing models on the prediction of turbulent premixed and stratified combustion, Combust. Sci. Technol. 182 (2010), pp. 1141–1170.
  • A. Sjunnesson, C. Nelsson, and E. Max, LDA measurements of velocities and turbulence in a bluff body stabilized flame, Laser Anemom. 3 (1991), pp. 83–90.
  • A. Sjunnesson, P. Henrikson, and C. Löfström, CARS measurements and visualization of reacting flows in a bluff body stabilized flame, AIAA 28th Joint Propulsion Conference and Exhibit, AIAA paper no. 92-3650, Nashville, TN, 1992.
  • R.K. Akula, A. Sadiki, J. Janicka, and J. Warnatz, Evaluation of large eddy simulation of premixed turbulent combustion using flame surface density approach, Third European Combustion Meeting, Chania, Crete, 2007. . Available at http://www.combustion.org.uk/ECM_2007/ecm2007_papers/10-13.pdf.
  • C. Fureby, Large eddy simulation of combustion instabilities in a jet engine afterburner model, Combust. Sci. Technol. 161 (2000), pp. 213–243.
  • C. Fureby, A computational study of combustion instabilities due to vortex shedding, Proc. Combust. Inst. 28 (2000), pp. 783–791.
  • E. Baudoin, R. Yu, K.-J. Nogenmyr, and X.-S. Bai, Comparison of LES models applied to a bluff body stabilized flame, 47th AIAA Aerospace Sciences Meeting, . AIAA, Orlando, FL,, 2009.
  • N. Chakraborty and R. Cant, Effects of Lewis number on scalar transport in turbulent premixed flames, Phys. Fluids 21 (2009), . 035110. Available at http://dx.doi.org/10.1063/1.3097007.
  • E. Giacomazzi, V. Battaglia, and C. Bruno, The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES, Combust. Flame 138 (2004), pp. 320–335.
  • G. Rymer, Analyse et modélisation du taux de réaction moyen et des mécanismes de transport en combustion turbulente prémélangée [Analysis and modeling of the mean reaction rate and transport terms in turbulent premixed combustion], . Ph.D. diss., École Centrale Paris, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.