1,299
Views
103
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling

, , , &
Pages 65-88 | Received 21 May 2013, Accepted 16 Oct 2013, Published online: 07 Jan 2014

References

  • M. Meijer, B. Somers, J. Johnson, J. Naber, S.-Y. Lee, L.M. Malbec, G. Bruneaux, L.M. Pickett, M. Bardi, R. Payri, and T. Bazyn, Engine Combustion Network (ECN): Characterization and comparison of boundary conditions for different combustion vessels, Atomiz. & Sprays 22 (2012), pp. 777–806.
  • C. Bajaj, M. Ameen, and J. Abraham, Evaluation of an unsteady flamelet progress variable model for autoignition and flame lift-off in diesel jets, Combust. Sci. Technol. 185 (2013), pp. 454–472.
  • S. Kong, Y. Sun, and R.D. Reitz, Modeling diesel spray flame liftoff, sooting tendency, and NOx emissions using detailed chemistry with phenomenological soot model, J. Engng. – Gas Turbines & Power 129 (2007), pp. 245–251.
  • S. Som and S. Aggarwal, Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines, Combust. Flame 157 (2010), pp. 1179–1193.
  • Y. Pei, E.R. Hawkes, and S. Kook, Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions, Proc. Combust. Inst. 34 (2013), pp. 3039–3047.
  • U. Azimov, K.S. Kim, and C. Bae, Modeling of flame lift-off length in diesel low-temperature combustion with multi-dimensional CFD based on the flame surface density and extinction concept, Combust. Theory Model. 14 (2010), pp. 155–175.
  • L.M. Pickett and D.L. Siebers, Soot in diesel fuel jets: Effects of ambient temperature, ambient density and injection pressure, Combust. Flame 138 (2004), pp. 114–135.
  • V. Mittal, D.J. Cook, and D. Pitsch, An extended multi-regime flamelet model for IC engines, Combust. Flame 159 (2012), pp. 2767–2776.
  • P.K. Senecal, E. Pomraning, and K.J. Richards, Multidimensional modelling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry, SAE Paper 2003-01-1043 (2003). Available at http://dx.doi.org/10.4271/2003-01-1043.
  • V. Fraioli, C. Beatrice, and M. Lazzaro, Soot particle size modelling in 3D simulations of diesel engine combustion, Combust. Theory Model. 15 (2011), pp. 863–892.
  • H. Barths, C. Antoni, and N. Peters, Three-dimensional simulation of pollutant formation in a DI diesel engine using multiple interactive flamelets, SAE Paper 982459 (1998). Available at http://dx.doi.org/10.4271/982459.
  • Y.M. Wright, G. De Paola, K. Boulouchos, and E. Mastorakos, Simulations of spray auto-ignition and flame establishment with twodimensional CMC, Combust. Flame 143 (2005), pp. 402–419.
  • C. Bekdemir, L. Somers, and L. Goeyde, Modeling diesel engine combustion using pressure dependent flamelet generated manifolds, Proc. Combust. Inst. 33 (2011), pp. 2887–2894.
  • R. Aglave, U. Riedel, and J. Warnatz, Turbulence–chemistry interactions in CFD modelling of diesel engines, Combust. Theory Model. 12 (2008), pp. 305–325.
  • T. Lucchini, G. D’Errico, D. Ettorre, and G. Ferrari, Numerical investigation of non-reacting and reacting diesel sprays in constant-volume vessels, SAE Int. J. Fuels Lubr. 2(1) (2009), pp. 966–975. (2009). Available at http://dx.doi.org/10.4271/2009-01-1971.
  • S. Singh, M. Musculus, and R.D. Reitz, Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion, Combust. Flame 156 (2009), pp. 1898–1908.
  • F. Contino, H. Jeanmart, T. Lucchini, and G. D’Errico, Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: An effective method for solving combustion in engine simulations, Proc. Combust. Inst. 33(2) (2011), pp. 3057–3064.
  • F. Contino, T. Lucchini, G. D’Errico, C. Duynslaegher, V. Dias, and H. Jeanmart, Simulations of advanced combustion modes using detailed chemistry combined with tabulation and mechanism reduction techniques, SAE Int. J. Engines 5 (2012), pp. 185–196.
  • X. Yang, A. Solomon, and T. Kuo, Ignition and combustion simulations of spray-guided SIDI engine using Arrhenius combustion with spark-energy deposition model, SAE Paper 2012-01-0147 (2012). Available at http://dx.doi.org/10.4271/2012-01-0147.
  • OpenFOAM website, http://www.openfoam.org, The OpenFOAM Foundation, 2011.
  • L.M. Pickett, C.L. Genzale, G. Bruneaux, L.-M. Malbec, and C. Christiansen, Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3 (2010), pp. 156–181.
  • M. Jangi, T. Lucchini, G. D’Errico, and X.-S. Bai, Effects of EGR on the structure and emissions of diesel combustion, Proc. Combust. Inst. 34 (2013), pp. 3091–3098.
  • M. Jangi, R. Yu, and X.S. Bai, A multi-zone chemistry mapping approach for direct numerical simulation of auto-ignition and flame propagation in a constant volume enclosure, Combust. Theory Model. 16 (2012), pp. 221–249.
  • H. Lehtiniemi, Y. Zhang, R. Rawat, and F. Mauss, Efficient 3-D CFD combustion modeling with transient flamelet models, SAE Paper 2008-01-0957 (2008). Available at http://dx.doi.org/10.4271/2008-01-0957.
  • H. Barths, C. Hasse, and N. Peters, Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines, Int. J. Engine Res. 1(3) (2000), pp. 249–267.
  • J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Berlin, Springer, 2002.
  • K.Y. Huh and A.D. Gosman, A phenomenological model of diesel spray atomization, Proceedings of the International Conference on Multiphase Flows, Tsukuba, Japan, 1991.
  • R. D. Reitz, Modeling atomization processes in high pressure vaporizing sprays, Atomis. Spray Technol. 3 (1987), pp. 309–337.
  • W. Ranz and W. Marshall, Evaporation from drops, Chem. Engrg Progr. 48 (1952), pp. 142–180.
  • C. Baumgarten, Mixture Formation in Internal Combustion Engines, Berlin, Springer, 2006.
  • T. Lucchini, G. D’Errico, and D. Ettorre, Numerical investigation of the spray–mesh–turbulence interactions for high-pressure, evaporating sprays at engine conditions, Int. J. Heat Fluid Flow 32 (2011), pp. 285–297.
  • J. Stoer and F. Bulirsch, Introduction to Numerical Analysis, Berlin, Springer-Verlag, 1980.
  • M. Jangi and X.S. Bai, Multidimensional chemistry coordinate mapping approach for combustion modelling with finite-rate chemistry, Combust. Theory Model. 16 (2012), pp. 1109–1132.
  • M. Raju, M. Wang, M. Dai, W. Piggott, and D. Flowers, Acceleration of detailed chemical kinetics using multi-zone modeling for CFD in internal combustion engine simulations, SAE Paper 2012-01-0135 (2012). Available at http://dx.doi.org/10.4271/2012-01-0135.
  • A. Babajimopoulos, D.N. Assanis, D.L. Flowers, S.M. Aceves, and R.P. Hessel, A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines, Int. J. Engine Res. 6 (2005), pp. 497–512.
  • N. Peters, Laminar flamelet concepts in turbulent combustion, in Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1986, pp. 1231–1250.
  • J. Réveillon and L. Vervisch, Spray vaporization in nonpremixed turbulent combustion modeling: A single droplet model, Combust. Flame 121 (2000), pp. 75–90.
  • C. W. Hasse, A two-dimensional flamelet model for multiple injections in diesel engines, Dr.-Ing. diss., Fakultät für Maschinenwesen, Technischen Hochschule Aachen, Germany, 2004.
  • H. Pitsch, H. Barths, and N. Peters, Three dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach, SAE Paper 962057, SAE Transactions 105 (1996), pp. 2010–2025. Available at http://dx.doi.org/10.4271/962057.
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339.
  • T. Hellstrom, RIF implementation and testing, Tech. Rep. 01.07.1996–31.12.1996, Diesel, Technical Report, 1997.
  • A. Patel, S.C. Kong, and R.D. Reitz, Development and validation of a reduced reaction mechanism for HCCI engine simulations, SAE Paper 2004-01-0558 (2004). Available at http://dx.doi.org/10.4271/2004-01-0558.
  • S. Liu, J.C. Hewson, J.H. Chen, and H. Pitsch, Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow, Combust. Flame 137 (2004), pp. 320–339.
  • S. Tanaka, F. Ayala, and J.C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame 133 (2003), pp. 467–481.
  • F. Contino, F. Foucher, P. Dagaut, T. Lucchini, G. D’Errico, and C. Mounaïm-Rousselle, Experimental and numerical analysis of nitric oxide effect on the ignition of iso-octane in a single cylinder HCCI engine, Combust. Flame 160 (2013), pp. 1476–1483.
  • M. Singer and S. Pope, Exploiting ISAT to solve the equations of reacting flow, Combust. Theory Model. 8 (2004), pp. 361–383.
  • L. Liang, J.G. Stevens, S. Raman, and J.T. Farrell, The use of dynamic adaptive chemistry in combustion simulation of gasoline surrogate fuels, Combust. Flame 156 (2009), pp. 1493–1502.
  • Y. Shi, L. Liang, H.-W. Ge, and R.D. Reitz, Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes, Combust. Theory Model. 14 (2010), pp. 69–89.
  • S. Som, D.E. Longman, Z. Luo, M. Plomer, and T. Lu, Three dimensional simulations of diesel sprays using n-dodecane as a surrogate, Eastern States Section of the Combustion Institute Fall Technical Meeting, Storrs, CT, 2011.
  • A. Mze-Ahmed, K. Hadj-Ali, P. Dagaut, and G. Dayma, Experimental and modeling study of the oxidation kinetics of n-undecane and n-dodecane in a jet-stirred reactor, Energy & Fuels 26 (2012), pp. 4253–4268.
  • C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, and E.J. Silke, A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane, Combust. Flame 156 (2009), pp. 181–199.
  • D.L. Siebers and B. Higgins, Flame lift-off on direct-injection diesel sprays under quiescent conditions, SAE Paper 2001-01-0530 (2001). Available at http://dx.doi.org/10.4271/2001-01-0530.
  • Y. Wright, G. Depaola, K. Boulouchos, and E. Mastorakos, Simulations of spray autoignition and flame establishment with two-dimensional CMC, Combust. Flame 143 (2005), pp. 402–419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.