455
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

&
Pages 148-184 | Received 02 Apr 2013, Accepted 22 Oct 2013, Published online: 07 Feb 2014

References

  • J.A. Green and T.M. Sugden, Some observations on the mechanism of ionization in flames containing hydrocarbons, Symp. (Int.) Combust. 9 (1963), pp. 607–621.
  • H.F. Calcote and D.E. Jensen, Ion-molecule reactions in flames, in Ion-Molecule Reactions in the Gas Phase, Advances in Chemistry, Vol. 58, P.J. Ausloos, ed., American Chemical Society, Washington, DC, 1967, pp. 291–314. Available at http://pubs.acs.org/doi/abs/ 10.1021/ba-1966-0058.ch017.
  • J.M. Goodings, D.K. Bohme, and C.W. Ng, Detailed ion chemistry in methane–oxygen flames. I. Positive ions, Combust. Flame 36 (1979), pp. 27–43.
  • J.M. Goodings, D.K. Bohme, and C.W. Ng, Detailed ion chemistry in methane–oxygen flames. II. Negative ions, Combust. Flame 36 (1979), pp. 45–62.
  • A.A. Fridman and L.A. Kennedy, Plasma Physics and Engineering, Taylor & Francis, New York, 2004.
  • A.B. Fialkov, Investigations on ions in flames, Prog. Energ. Combust. Sci. 23 (1997), pp. 399–528.
  • J. Lawton and F.J. Weinberg, Electrical Aspects of Combustion, Clarendon Press, Oxford, 1970.
  • D. Bradley, The effects of electric fields on combustion processes, in Advanced Combustion Methods, F. Weinberg, ed., Academic Press, New York, 1986, pp. 331–395.
  • K.G. Payne and F.J. Weinberg, Measurements on field-induced ion flows from plane flames, Symp. (Int.) Combust. 8 (1961), pp. 207–217.
  • J. Lawton and F.J. Weinberg, Maximum ion currents from flames and the maximum practical effects of applied electric fields, Proc. R. Soc. London, Ser. A 277 (1964), pp. 468–497.
  • J.P. Boeuf and L.C. Pitchford, Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge, J. Appl. Phys. 97 (2005), Paper No. 103307. Available at http://dx.doi.org/10.1063/1.1901841.
  • J.C. Polanyi and W.H. Wong, Location of energy barriers. I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51 (1969), pp. 1439–1450.
  • M.H. Mok, Location of energy barriers. II. Correlation with barrier height, J. Chem. Phys. 51 (1969), pp. 1451–1469.
  • Y.P. Raizer, V.I. Kisin, and J.E. Allen, Gas Discharge Physics, Vol. 1, Springer-Verlag, Berlin, 1991.
  • M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
  • M.K. Kim, S.K. Ryu, S.H. Won, and S.H. Chung, Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow, Combust. Flame 157 (2010), pp. 17–24.
  • M.K. Kim, S.H. Chung, and H.H. Kim, Effect of AC electric fields on the stabilization of premixed Bunsen flames, Proc. Combust. Inst. 33 (2011), pp. 1137–1144.
  • M.S. Cha and Y. Lee, Premixed combustion under electric field in a constant volume chamber, IEEE Trans. Plasma Sci. 40 (2012), pp. 3131–3138.
  • B. Wolk, A. DeFilippo, J.-Y. Chen, R. Dibble, A. Nishiyama, and Y. Ikeda, Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combust. Flame 160 (2013), pp. 1225–1234.
  • A.Y. Starikovskii, Plasma supported combustion, Proc. Combust. Inst. 30 (2005), pp. 2405–2417.
  • A. Starikovskiy and N. Aleksandrov, Plasma-assisted ignition and combustion, Prog. Energy Combust. Sci. 39 (2013), pp. 61–110.
  • B.A. Strayer, J.D. Posner, D. Dunn-Rankin, and F.J. Weinberg, Simulating microgravity in small diffusion flames by using electric fields to counterbalance natural convection, Phil. Trans. R. Soc. London, Ser. A 458 (2002), pp. 1151–1166.
  • S. Karnani, D. Dunn-Rankin, F. Takahashi, Z.G. Yuan, and D. Stocker, Simulating gravity in microgravity combustion using electric fields, Combust. Flame 184 (2012), pp. 1891–1902.
  • M.J. Papac and D. Dunn-Rankin, Modelling electric field driven convection in small combustion plasmas and surrounding gases, Combust. Theory Model. 12 (2008), pp. 23–44.
  • H.C. Jaggers and A. von Engel, The effect of electric fields on the burning velocity of various flames, Combust. Flame 16 (1971), pp. 275–285.
  • R. Bowser and F. Weinberg, The effect of direct electric fields on normal burning velocity, Combust. Flame 18 (1972), pp. 296–300.
  • H.C. Jaggers, R.J. Bowser, F.J. Weinberg, and S.S. Sandhu, The effect of electric fields on burning velocity, Combust. Flame 19 (1972), pp. 135–136.
  • J. Van den Boom, A.A. Konnov, A. Verhasselt, V.N. Kornilov, L.P.H. de Goey, and H. Nijmeijer, The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames, Proc. Combust. Inst. 32 (2009), pp. 1237–1244.
  • E.N. Volkov, V.N. Kornilov, and L.P.H. de Goey, Experimental evaluation of DC electric field effect on the thermoacoustic behaviour of flat premixed flames, Proc. Combust. Inst. 34 (2013), pp. 955–962.
  • J. Schmidt and B. Ganguly, Effect of pulsed, sub-breakdown applied electric field on propane/air flame through simultaneous OH/acetone PLIF, Combust. Flame 160 (2013), pp. 2820–2826.
  • F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, Study of the influence of electric fields on flames using planar LIF and PIV techniques, Proc. Combust. Inst. 33 (2011), pp. 3195–3201.
  • J. Kuhl, G. Jovičić, L. Zigan, and A. Leipertz, Transient electric field response of laminar premixed flames, Proc. Combust. Inst. 34 (2013), pp. 3303–3310.
  • J. Schmidt, S. Kostka, A. Lynch, and B. Ganguly, Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame, Exp. Fluids 51 (2011), pp. 657–665.
  • S.D. Marcum and B.N. Ganguly, Electric-field-induced flame speed modification, Combust. Flame 143 (2005), pp. 27–36.
  • D.L. Wisman, S.D. Marcum, and B.N. Ganguly, Electrical control of the thermodiffusive instability in premixed propane–air flames, Combust. Flame 151 (2007), pp. 639–648.
  • A.V. Lebedev, M.A. Deminsky, A.V. Zaitzevsky, and B.V. Potapkin, Effect of O2(a1Δg) on the low-temperature mechanism of CH4 oxidation, Combust. Flame 160 (2013), pp. 530–538.
  • T. Ombrello, S.H. Won, Y. Ju, and S. Williams, Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg), Combust. Flame 157 (2010), pp. 1916–1928.
  • D. Bradley and S.M.A. Ibrahim, The effects of electrical fields upon electron energy exchanges in flame gases, Combust. Flame 22 (1974), pp. 43–52.
  • L.S. Frost, Conductivity of seeded atmospheric pressure plasmas, J. Appl. Phys. 32 (1961), pp. 2029–2036.
  • J. Schneider and F.W. Hofmann, Absorption and dispersion of microwaves in flames, Phys. Rev. 116 (1959), pp. 244–249.
  • H. Belcher and T.M. Sugden, Studies on the ionization produced by metallic salts in flames. I. The determination of the collision frequency of electrons in coal-gas/air flames, Proc. R. Soc. London, Ser. A (1950), pp. 480–488.
  • S. Selle and U. Riedel, Transport properties of ionized species, Ann. N.Y. Acad. Sci. 891 (1999), pp. 72–80. Available at http://dx.doi.org/10.1111/j.1749-6632.1999.tb08754.x.
  • J. Prager, U. Riedel, and J. Warnatz, Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames, Proc. Combust. Inst. 31 (2007), pp. 1129–1137.
  • F. Bisetti and M. El Morsli, Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames, Combust. Flame 159 (2012), pp. 3518–3521.
  • F.L. Jones, P.M. Becker, and R.J. Heinsohn, A mathematical model of the opposed-jet diffusion flame: Effect of an electric field on concentration and temperature profiles, Combust. Flame 19 (1972), pp. 351–362.
  • T. Pedersen and R.C. Brown, Simulation of electric field effects in premixed methane flames, Combust. Flame 94 (1993), pp. 433–448.
  • J. Hu, B. Rivin, and E. Sher, The effect of an electric field on the shape of co-flowing and candle-type methane–air flames, Exp. Thermal Fluid Sci. 21 (2000), pp. 124–133.
  • M. Belhi, P. Domingo, and P. Vervisch, Direct numerical simulation of the effect of an electric field on flame stability, Combust. Flame 157 (2010), pp. 2286–2297.
  • M. Belhi, P. Domingo, and P. Vervisch, Modelling of the effect of DC and AC electric fields on the stability of a lifted diffusion methane/air flame, Combust. Theory Model. 17 (2013), pp. 749–787.
  • G.J.M. Hagelaar, BOLSIG+: Electron Boltzmann equation solver, 2005; software available at http://www.bolsig.laplace.univ-tlse.fr/.
  • V.A. Rozhanski and L.D. Tsendin, Transport phenomena in partially ionized plasma, CRC, London, 2001.
  • R.W. Crompton, Benchmark measurements of cross sections for electron collisions: Electron swarm methods, Adv. At. Mol. Opt. Phys. 33 (1994), pp. 97–148.
  • J. Cancian, B.A.V. Bennett, M.B. Colket, and M.D. Smooke, Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames, Combust. Theory Model. 17 (2013), pp. 294–315.
  • R.J. Kee, J.F. Grcar, M.D. Smooke, and J.A. Miller, PREMIX: A Fortran program for modeling steady laminar one-dimensional premixed flame, Tech. Rep. SAND85–8240, Sandia National Laboratories, Albuquerque, NM, 1985.
  • D.B. Graves and K.F. Jensen, A continuum model of DC and RF discharges, IEEE Trans. Plasma Sci. 14 (1986), pp. 78–91.
  • M. Capitelli, C.M. Ferreira, B.F. Gordiets, and A.I. Osipov, Plasma Kinetics in Atmospheric Gases, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 31, Springer, Berlin, 2000.
  • A.V. Phelps and L.C. Pitchford, Anisotropic scattering of electrons by N2 and its effect on electron transport, Phys. Rev. A 31 (1985), pp. 2932–2949.
  • Z.L. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, and M. Radmilović-RaÄenović, Measurement and interpretation of swarm parameters and their application in plasma modelling, J. Phys. D: Appl. Phys. 42 (2009), Paper No. 194002. Available at http://dx.doi.org/10.1088/0022-3727/42/19/194002.
  • Y. Itikawa (ed.), Molecular Processes in Plasmas: Collisions of Charged Particles with Molecules, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 43, Springer, Berlin, 2007.
  • J.A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed., Springer-Verlag, Berlin, 2004.
  • S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed., Cambridge University Press, Cambridge, UK, 1991.
  • I.N. Kosarev, N.L. Aleksandrov, S.V. Kindysheva, S.M. Starikovskaia, and A.Y. Starikovskii, Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures, Combust. Flame 154 (2008), pp. 569–586.
  • G.J.M. Hagelaar and L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol. 14 (2005), pp. 722–733.
  • W.G. Vincenti and C.H. Krüger, Introduction to Physical Gas Dynamics, Wiley, New York, 1965.
  • LXcat, Laboratoire Plasma et Conversion D’Energie (Laplace), 2012; software available at http://www.lxcat.laplace.univ-tlse.fr.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr, V.V. Lissianski, and Z. Qin, GRI-Mech 3.0, 1999. Available at http://www.me.berkeley.edu/gri_mech.
  • J.M. Goodings, J. Guo, A.N. Hayhurst, and S.G. Taylor, Current-voltage characteristics in a flame plasma: Analysis for positive and negative ions, with applications, Int. J. Mass Spectrom. 206 (2001), pp. 137–151.
  • L.B.W. Peerlings, M. Manohar, V.N. Kornilov, and L.P.H. de Goey, Flame ion generation rate as a measure of the flame thermo-acoustic response, Combust. Flame 160 (2013), pp. 2490–2496.
  • A. Cessou, E. Varea, K. Criner, G. Godard, and P. Vervisch, Simultaneous measurements of OH, mixture fraction and velocity fields to investigate flame stabilization enhancement by electric field, Exp. Fluids 52 (2012), pp. 905–917.
  • M.K. Kim, S.H. Chung, and H.H. Kim, Effect of electric fields on the stabilization of premixed laminar Bunsen flames at low AC frequency: Bi-ionic wind effect, Combust. Flame 159 (2012), pp. 1151–1159.
  • S.H. Won, M.S. Cha, C.S. Park, and S.H. Chung, Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets, Proc. Combust. Inst. 31 (2007), pp. 963–970.
  • S.H. Won, S.K. Ryu, M.K. Kim, M.S. Cha, and S.H. Chung, Effect of electric fields on the propagation speed of tribrachial flames in coflow jets, Combust. Flame 152 (2008), pp. 496–506.
  • J. Warnatz, Rate coefficients in the C/H/O system, in Combustion Chemistry, W.C. Gardiner, ed., Springer-Verlag, New York, 1984, pp. 197–360.
  • J. Guo and J.M. Goodings, Recombination coefficients for H3O+ ions with electrons e− and with Cl−, Br−, and I− at flame temperatures 1820–2400 K, Chem. Phys. Lett. 329 (2000), pp. 393–398.
  • J.L. Moruzzi and D.A. Price, Ionization, attachment and detachment in air and air–CO2 mixtures, J. Phys. D: Appl. Phys. 7 (1974), pp. 1434–1440.
  • K. Mašek, Electron gas in discharge plasma in air, Czech. J. Phys. B 34 (1984), pp. 655–664.
  • J.d. Urquijo, C.A. Arriaga, C. Cisneros, and I. Alvarez, A time-resolved study of ionization, electron attachment and positive-ion drift in methane, J. Phys. D: Appl. Phys. 32 (1999), pp. 41–45.
  • N.L. Aleksandrov, S.V. Kindysheva, I.N. Kosarev, S.M. Starikovskaia, and A.Y. Starikovskii, Mechanism of ignition by non-equilibrium plasma, Proc. Combust. Inst. 32 (2009), pp. 205–212.
  • J.L. Pack and A.V. Phelps, Drift velocities of slow electrons in helium, neon, argon, hydrogen, and nitrogen, Phys. Rev. 121 (1961), pp. 798–806.
  • G. Ruiz-Vargas, M. Yousfi, and J. de Urquijo, Electron transport coefficients in the mixtures of H2O with N2, O2, CO2 and dry air for the optimization of non-thermal atmospheric pressure plasmas, J. Phys. D: Appl. Phys. 43 (2010), Paper No. 455201. Available at http://dx.doi.org/10.1088/0022-3727/43/45/455201.
  • J. Dutton, A survey of electron swarm data, J. Phys. Chem. Ref. Data 4 (1975), pp. 577–856.
  • S.A.J. Al-Amin, H.N. Hucukarpaci, and J.L. Lucas, Electron swarm parameters in oxygen and methane, J. Phys. D: Appl. Phys. 18 (1985), pp. 1781–1794.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.