2,267
Views
108
CrossRef citations to date
0
Altmetric
Original Articles

Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

, , , , , & show all
Pages 187-203 | Received 12 Jun 2012, Accepted 24 Nov 2013, Published online: 04 Mar 2014

References

  • J. Dec, A conceptual model of DI diesel combustion based on laser-sheet imaging, International SAE Congress & Exposition, Detroit, MI, 1997.
  • S.C. Kong, Y. Sun, and R.D. Reitz, Modeling diesel spray flame liftoff, sooting tendency, and NOx emissions using detailed chemistry with phenomenological soot model. J. Eng. Gas Turbines Power 129 (2007), pp. 245–251.
  • P.K. Senecal, K.J. Richards, E. Pomraning, T. Yang, M.Z. Dai, R.M. McDavid, M.A. Patterson, S. Hou, and T. Shethaji, A new parallel cut-cell Cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations, SAE World Congress & Exhibition, Detroit, MI, 2007.
  • S. Som and S.K. Aggarwal, Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust. Flame 157(6) (2010), pp. 1179–1193.
  • J.T. Farrell, N.P. Cernansky, F.L. Dryer, D.G. Friend, C.A. Hergart, C.K. Law, R. McDavid, C.J. Mueller, and H. Pitsch, Development of an experimental database and kinetic models for surrogate diesel fuels, SAE World Congress & Exhibition, Detroit, MI, 2007.
  • L.M. Pickett, S. Parrish, S. Kaiser, et al. Engine Combustion Network. Available at http://www.sandia.gov/ecn/
  • L.M. Pickett, C.L. Genzale, G. Bruneaux, L.M. Malbec, L. Hermant, C. Christiansen, and J. Schramm, Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE Powertrains Fuels & Lubricants Meeting, San Diego, CA, 2010.
  • L.M. Pickett, J. Manin, C.L. Genzale, D.L. Siebers, M.P.B. Musculus, and C.A. Idicheria, Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction, SAE World Congress & Exhibition, Detroit, MI, 2011.
  • K. Sahetchian, J.C. Champoussin, M. Brun, N. Levy, N. Blin-Simiand, C. Aligrot, F. Jorand, M. Socoliuc, A. Heiss, and N. Guerassi, Experimental study and modeling of dodecane ignition in a diesel engine, Combust. Flame 103 (1995), pp. 207–220.
  • X. You, F.N. Egolfopoulos, and H. Wang, Detailed and simplified kinetic models of n-dodecane oxidation: The role of fuel cracking in aliphatic hydrocarbon combustion, Proc. Combust. Inst. 32(1) (2009), pp. 403–410.
  • C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, and E.J. Silke, A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane, Combust. Flame 156(1) (2009), pp. 181–199.
  • S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, and R.K. Hanson, n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories, Proc. Combust. Inst. 32(1) (2009), pp. 173–180.
  • S. Jahangirian, S. Dooley, H.M. Francis, and F. Dryer, A detailed experimental and kinetic modeling study of n-decane oxidation at elevated pressures, Combust. Flame 159(1) (2012), pp. 30–43.
  • T.F. Lu and C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (2005), pp. 1333–1341.
  • Z. Luo, T. Lu, M.J. Maciaszek, S. Som, and D.E. Longman, A reduced mechanism for high temperature oxidation of biodiesel surrogates, Energy Fuels 24(12) (2010), pp. 6283–6293.
  • T. Lu, M. Plomer, Z. Luo, S.M. Sarathy, W.J. Pitz, S. Som, and D.E. Longman, Directed relation graph with expert knowledge for skeletal mechanism reduction, The 7th US National Combustion Meeting, Atlanta, GA, 2011.
  • W. Liu, R. Sivaramakrishnan, M.J. Davis, S. Som, D.E. Longman, and T. Lu, Development of a reduced biodiesel surrogate model for compression ignition engine modeling, Proc. Combust. Inst. 34(1) (2013), pp. 401–409.
  • S.M. Sarathy, U. Niemann, C. Yeung, R. Gehmlich, C.K. Westbrook, M. Plomer, Z. Luo, M. Mehl, W.J. Pitz, K. Seshadri, M.J. Thomson, and T. Lu, A counterflow diffusion flame study of branched octane isomers, Proc. Combust. Inst. 34(1) (2013), pp. 1015–1023.
  • X.L. Zheng, T.F. Lu, and C.K. Law, Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene, Proc. Combust. Inst. 31(1) (2007), pp. 367–375.
  • R. Sankaran, E.R. Hawkes, J.H. Chen, T. Lu, and C.K. Law, Structure of a spatially developing turbulent lean methane-air Bunsen flame, Proc. Combust. Inst. 31(1) (2007), pp. 1291–1298.
  • S.M. Sarathy, C.K. Westbrook, M. Mehl, W.J. Pitz, C. Togbe, P. Dagaut, H. Wang, M.A. Oehlschlaeger, U. Niemann, K. Seshadri, P.S. Veloo, C. Ji, F.N. Egolfopoulos, and T. Lu, Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20, Combust. Flame 158 (2011), pp. 2338–2357.
  • M. Mehl, H.J. Curran, W.J. Pitz, and C.K. Westbrook, Chemical kinetic modeling of component mixtures relevant to gasoline, The 4th European Combustion Meeting, Vienna, Austria, 2009.
  • S. Som and D.E. Longman, Numerical study comparing the combustion and emission characteristics of biodiesel to petrodiesel, Energy Fuels 25 (2011), pp. 1373–1386.
  • S. Som, D.E. Longman, A.I. Ramírez, and S.K. Aggarwal, A comparison of injector flow and spray characteristics of biodiesel with petrodiesel, Fuel 89(12) (2010), pp. 4014–4024.
  • S. Som, Development and validation of spray models for investigating diesel engine combustion and emissions, Ph.D. thesis, University of Illinois at Chicago, 2009.
  • R.D. Reitz, Modeling atomization process in high pressure vaporizing sprays, Atomization Spray Technol. 3 (1987), pp. 309–337.
  • The NIST Chemistry WebBook. Available at http://webbook.nist.gov/cgi/cbook.cgi?ID= C112403&Mask=200. Access date May, 2012.
  • P.K. Senecal, E. Pomraning, K.J. Richards, T.E. Briggs, C.Y. Choi, R.M. McDavid, and M.A. Patterson, Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry, SAE World Congress & Exhibition, Detroit, MI, 2003.
  • J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Inc., New York City, NY, 1988.
  • P.K. Senecal, E. Pomraning, K.J. Richards, and S. Som, Grid-convergent spray models for internal combustion engine CFD simulations, ASME Internal Combustion Engine Division Fall Technical Conference, Vancouver, Canada, 2012.
  • S. Som and S.K. Aggarwal, Assessment of atomization models for diesel engine simulations, Atomization Sprays 19(9) (2009), pp. 885–903.
  • R.J. Kee, F.M. Rupley, and J.A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, SAND-89-8009: 1989, p. 127.
  • D.F. Davidson, D.R. Haylett, and R.K. Hanson, Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels, Combust. Flame 155(1–2) (2008), pp. 108–117.
  • H.S. Shen, J. Steinberg, J. Vanderover, and M.A. Oehlschlaeger, A shock tube study of the ignition of n-heptane, n-decane, n-dodecane, and n-tetradecane, Energy Fuels 23 (2009), pp. 2482–2489.
  • O. Herbinet, P.-M. Marquairea, F. Battin-Leclerca, and R. Fourneta, Thermal decomposition of n-dodecane: Experiments and kinetic modeling, J. Anal. Appl. Pyrolysis 78(2) (2007), pp. 419–429.
  • A. Mze-Ahmed, K. Hadj-Ali, P. Dagaut, and D. Dayma, Experimental and modeling study of the oxidation kinetics of n-undecane and n-dodecane in a jet stirred reactor, Energy Fuels 26 (2012), pp. 4253–4268.
  • K. Kumar and C.J. Sung, Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures, Combust. Flame 151 (2007), pp. 209–224.
  • C. Ji, E. Dames, Y.L. Wang, H. Wang, and F.N. Egolfopoulos, Propagation and extinction of premixed C5–C12 n-alkane flames, Combust. Flame 157 (2010), pp. 277–287.
  • J.A. Cooke, M. Bellucci, M.D. Smooke, A. Gomez, A. Violi, T. Faravelli, and E. Ranzi, Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames, Proc. Combust. Inst. 30(1) (2005), pp. 439–446.
  • S. Humer, A. Frassoldati, S. Granata, T. Faravelli, E. Ranzi, R. Seiser, and K. Seshadri, Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar nonpremixed flows, Proc. Combust. Inst. 31 (2007), 393–400.
  • F. Payri, F.J. Salvador, J. Gimeno, et al. CMT – Motores Térmicos. Available at http://www.cmt.upv.es/ECN07.aspx
  • S. Som, D.E. Longman, Z. Luo, M. Plomer, T. Lu, P.K. Senecal, and E. Pomraning, Simulating Flame Lift-off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-kinetic Mechanism and LES Turbulence Model in: Proceedings of the ASME 2011 Internal Combustion Engine Division Fall Technical Conference, Morgantown, WV, 2011.
  • B.C. Choi and S.H. Chung, Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature, Combust. Flame 157(12) (2010), pp. 2348–2356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.