451
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

&
Pages 388-413 | Received 29 Jan 2014, Accepted 21 Apr 2014, Published online: 10 Jun 2014

References

  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • D.C. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2010), pp. 168–259.
  • S.B. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), pp. 1–31.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • R. Cao and S.B. Pope, The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames, Combust. Flame 143 (2005), pp. 450–470.
  • M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, and S.B. Pope, Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D), Proc. Combust. Inst. 30 (2005), pp. 549–556.
  • V. Raman and H. Pitsch, A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry, Proc. Combust. Inst. 31 (2007), pp. 1711–1719.
  • M.R.H. Sheikhi, P. Givi, and S.B. Pope, Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows, Phys. Fluids 21 (2009), Paper No. 075102. Available at http://dx.doi.org/10.1063/1.3153907.
  • M.B. Nik, S.L. Yilmaz, P. Givi, M.R.H. Sheikhi, and S.B. Pope, Simulation of Sandia Flame D using velocity-scalar filtered density function, AIAA J. 48 (2010), pp. 1513–1522.
  • H. Wang and S.B. Pope, Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame, Proc. Combust. Inst. 33 (2011), pp. 1319–1330.
  • V. Hiremath, S.R. Lantz, H. Wang, and S.B. Pope, Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry, Proc. Combust. Inst. 34 (2013), pp. 205–215.
  • Y. Yang, H. Wang, S.B. Pope, and J.H. Chen, Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame, Proc. Combust. Inst. 34 (2013), pp. 1241–1249.
  • A. Gupta, D.C. Haworth, and M.F. Modest, Turbulence–radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames, Proc. Combust. Inst. 34 (2013), pp. 1281–1288.
  • D.H. Rowinski and S.B. Pope, An investigation of mixing in a three-stream turbulent jet, Phys. Fluids 25 (2013), Paper No. 105105. Available at http://dx.doi.org/10.1063/1.4822434.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 3rd ed., e-Learning@cerfacs, 2012.
  • T.S. Kuan, R.P. Lindstedt, and E.M. Vaos, Advances in Confined Detonations and Pulse Detonation Engines, G.D. Roy, ed., Torus Press, Moscow, 2003.
  • R.P. Lindstedt and E.M. Vaos, Transported PDF modeling of high-Reynolds-number premixed turbulent flames, Combust. Flame 145 (2006), pp. 495–511.
  • M. Stöllinger and S. Heinz, Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame, Combust. Flame 157 (2010), pp. 1671–1685.
  • B.T. Zoller, M.L. Hack, and P. Jenny, A PDF combustion model for turbulent premixed flames, Proc. Combust. Inst. 34 (2013), pp. 1421–1428.
  • R. Borghi, On the structure and morphology of turbulent premixed flames, in Recent Advances in the Aerospace Sciences, C. Bruno and S. Casci, eds., Plenum Press, New York, 1985, pp. 117–138.
  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38 (2006), pp. 453–482.
  • V. Hiremath, S. Lantz, H. Wang, and S.B. Pope, Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion, Combust. Flame 159 (2012), pp. 3096–3109.
  • V. Hiremath, Z. Ren, and S.B. Pope, Combined dimension reduction and tabulation strategy using ISAT-RCCE-GALI for the efficient implementation of combustion chemistry, Combust. Flame 158 (2011), pp. 2113–2127.
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997), pp. 41–63.
  • M. Bodenstein and S.C. Lind, Geschwindigkeit der bildung des bromwasserstoffs aus seinen elementen, Z. Phys. Chem. 57 (1906), pp. 168–175.
  • M.D. Smooke (ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames, Lecture Notes in Physics 384, Springer-Verlag, Berlin, 1991.
  • Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, J. Chem. Phys. 124 (2006), Paper No. 114111. Available at http://dx.doi.org/10.1063/1.2177243.
  • J.C. Keck and D. Gillespie, Rate-controlled partial equilibrium method for treating reacting gas-mixtures, Combust. Flame 17 (1971), pp. 237–241.
  • J.C. Keck, Rate-controlled constrained equilibrium theory of chemical reactions in complex systems, Prog. Energy Combust. Sci. 16 (1990), pp. 125–154.
  • S.B. Pope, Gibbs function continuation for the stable computation of chemical equilibrium, Combust. Flame 139 (2004), pp. 222–226.
  • A. Sjunnesson, S. Olovsson, and B. Sjöblom, Validation rig – a tool for flame studies, in Proceedings of the 10th International Symposium on Air Breathing Engines, Nottingham, UK, 1–6 September 1991, Vol. 1, AIAA, Washington, DC, 1991, pp. 385–393.
  • A. Sjunnesson, P. Henrikson, and C. Löfström, CARS measurements and visualization of reacting flows in a bluff body stabilized flame, in Proceedings of the 28th Joint Propulsion Conference and Exhibit, Nashville, TN, 6–8 July 1992, AIAA Paper No. 1992-3650.
  • C. Fureby and S.I. Möller, Large eddy simulation of reacting flows applied to bluff body stabilized flames, AIAA J. 33 (1995), pp. 2339–2347.
  • C. Fureby, Large eddy simulation of combustion instabilities in a jet engine afterburner model, Combust. Sci. Technol. 161 (2000), pp. 213–243.
  • P. Nilsson and X.S. Bai, Effects of flame stretch and wrinkling on co formation in turbulent premixed combustion, Proc. Combust. Inst. 29 (2002), pp. 1873–1879.
  • E. Giacomazzi, V. Battaglia, and C. Bruno, The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES, Combust. Flame 138 (2004), pp. 320–335.
  • P. Wang and X.S. Bai, Large eddy simulation of turbulent premixed flames using level-set G-equation, Proc. Combust. Inst. 30 (2005), pp. 583–591.
  • C. Fureby, Comparison of flamelet and finite rate chemistry LES for premixed turbulent combustion, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8–1 January 2007, AIAA Paper No. 2007-1413.
  • E. Baudoin, R. Yu, K.J. Nogenmyr, X.S. Bai, and C. Fureby, Comparison of LES models applied to a bluff body stabilized flame, in Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, 5–8 January 2009, AIAA Paper No. 2009-1178.
  • B. Manickam, J. Franke, S.P.R. Muppala, and F. Dinkelacker, Large-eddy simulation of triangular-stabilized lean premixed turbulent flames: Quality and error assessment, Flow Turbul. Combust. (2012), pp. 1–34.
  • T. Ma, O.T. Stein, N. Chakraborty, and A.M. Kempf, A posteriori testing of algebraic flame surface density models for LES, Combust. Theory Model. 17 (2013), pp. 431–482.
  • P.P. Popov, H. Wang, and S.B. Pope, Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows, J. Comput. Phys., submitted for publication.
  • S. Viswanathan, H. Wang, and S.B. Pope, Numerical implementation of mixing and molecular transport in LES/PDF studies of turbulent reacting flows, J. Comput. Phys. 230 (2011), pp. 6916–6957.
  • O. Desjardins, G. Blanquart, G. Balarac, and H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227 (2008), pp. 7125–7159.
  • Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys. 143 (1998), pp. 90–124.
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97.
  • M. Germano, U. Piomelli, P. Moin, and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dynam. 3 (1991), pp. 1760–1765.
  • D.K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A: Fluid Dynam. 4 (1992), pp. 633–635.
  • S. Kang, G. Iaccarino, F. Ham, and P. Moin, Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method, J. Comput. Phys. 228 (2009), pp. 6753–6772.
  • R. McDermott and S.B. Pope, A particle formulation for treating differential diffusion in filtered density function methods, J. Comput. Phys. 226 (2007), pp. 947–993.
  • H. Wang, P.P. Popov, and S.B. Pope, Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations, J. Comput. Phys. 229 (2010), pp. 1852–1878.
  • H. Pitsch, FlameMaster, a C++ computer program for 0D combustion and 1D laminar flame calculations, Institut für Technische Mechanik, RWTH Aachen University, Aachen, Germany, 1998; software available at http://www.stanford.edu.bases-doc.univ-lorraine.fr/group/pitsch/CES.htm.
  • M. Klein, A. Sadiki, and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys. 186 (2003), pp. 652–665.
  • A.M. Kempf, S. Wysocki, and M. Pettit, An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS, Comput. & Fluids 60 (2012), pp. 58–60.
  • A.A. Konnov, Detailed reaction mechanism for small hydrocarbons combustion: release 0.5, 2000.
  • P. Gokulakrishnan, R. Bikkani, M.S. Klassen, R.J. Roby, and B.V. Kiel, Influence of turbulence–chemistry interaction in blow-out predictions of bluff-body stabilized flames, in Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, 5–8 January 2009, AIAA Paper No. 2009-1179.
  • I.A. Dodoulas and S. Navarro-Martinez, Large eddy simulation of premixed turbulent flames using the probability density function approach, Flow Turbul. Combust. 90 (2013), pp. 645–678.
  • V. Hiremath, Z. Ren, and S.B. Pope, A greedy algorithm for species selection in dimension reduction of combustion chemistry, Combust. Theory Model. 14 (2010), pp. 619–652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.