512
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

High fidelity radiative heat transfer models for high-pressure laminar hydrogen–air diffusion flames

, , , &
Pages 607-626 | Received 10 Sep 2013, Accepted 15 Aug 2014, Published online: 02 Oct 2014

References

  • A.H. Lefebvre and D.R. Ballal, Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed., CRC Press, Hoboken, NJ, 2010.
  • R. Viskanta and M.P. Mengüç, Radiation heat transfer in combustion systems, Progr. Energy Combust. Sci. 13 (1987), pp. 97–160.
  • G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 8th ed., Wiley, Hoboken, NJ, 2011.
  • M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, and S.J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinetics 44 (2012), pp. 444–474.
  • A. Wang, M.F. Modest, D.C. Haworth, and L. Wang, Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames, J. Quant. Spectrosc. & Rad. Trans. 109 (2008), pp. 269–279.
  • M.F. Modest, Radiative Heat Transfer, 3rd ed., Academic Press, New York, 2013.
  • E.M.Gelbard, Simplified spherical harmonics equations and their use in shielding problems, Tech. Rep. WAPD-T-1182, Bettis Atomic Power Laboratory, Pittsburgh, PA, 1961.
  • R.G. McClarren, Theoretical aspects of the simplified Pn equations, Transp. Theory & Statist. Phys. 39 (2011), pp. 73–109.
  • M.F. Modest and S. Lei, Simplified spherical harmonics method for radiative heat transfer, in Proceedings of Eurotherm Seminar 95: Computational Thermal Radiation in Participating Media IV, 18–20 April 2012, Nancy, France. J. Phys.: Conf. Ser. 369 (2012), Paper No. 012019. Available at http://dx.doi.org/10.1088/1742-6596/369/1/012019.
  • A. Wang and M.F. Modest, An adaptive emission model for Monte Carlo ray-tracing in participating media represented by statistical particle fields, J. Quant. Spectrosc. & Rad. Trans. 104 (2007), pp. 288–296.
  • L. Tessé, F. Dupoirieux, and J. Taine, Monte Carlo modeling of radiative transfer in a turbulent sooty flame, Int. J. Heat Mass Trans. 47 (2004), pp. 555–572.
  • A. Wang and M.F. Modest, Photon Monte Carlo simulation for radiative transfer in gaseous media represented by discrete particle fields, ASME J. Heat Trans. 128 (2006), pp. 1041–1049.
  • A.M. Feldick and M.F. Modest, A spectrally accurate tightly-coupled 2-D axisymmetric photon Monte Carlo RTE solver for hypersonic entry flows, ASME J. Heat Trans. 134 (2012), Paper No. 122701. Available at http://dx.doi.org/10.1115/1.4007069.
  • X.L. Xia, D.P. Ren, and H.P. Tan, A curve Monte Carlo method for radiative heat transfer in absorbing and scattering gradient-index medium, Numer. Heat Trans. B 50 (2006), pp. 181–192.
  • L. Soucasse, P. Rivière, and A. Soufiani, Monte Carlo methods for radiative transfer in quasi-isothermal participating media, J. Quant. Spectrosc. & Rad. Trans. (2013), pp. 34–42.
  • A. Wang and M.F. Modest, Spectral Monte Carlo models for nongray radiation analyses in inhomogeneous participating media, Int. J. Heat Mass Trans. 50 (2007), pp. 3877–3889.
  • T. Ozawa, M.F. Modest, and D.A. Levin, Spectral module for photon Monte Carlo calculations in hypersonic nonequilibrium radiation, ASME J. Heat Trans. 132 (2010), Paper No. 023406.
  • A.M. Feldick and M.F. Modest, Importance sampling in Monte Carlo ray tracing solutions applied to radiation in hypersonic entry flows, in Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, 13–17 March 2011, Honolulu, Hawaii, Paper No. AJTEC2011-44487. Available at http://dx.doi.org/10.1115/AJTEC2011-44487.
  • T. Ren and M.F. Modest, Hybrid wavenumber selection scheme for line-by-line photon Monte Carlo simulations in high-temperature gases, ASME J. Heat Trans. 135 (2013), Paper No. 084501.
  • J. Taine, A line-by-line calculation of low-resolution radiative properties of CO2–CO–transparent nonisothermal gases mixtures up to 3000 K, J. Quant. Spectrosc. & Rad. Trans. 30 (1983), pp. 371–379.
  • H. Zhang and M.F. Modest, A multi-scale full-spectrum correlated-k distribution for radiative heat transfer in inhomogeneous gas mixtures, J. Quant. Spectrosc. & Rad. Trans. 73 (2002), pp. 349–360.
  • L. Wang and M.F. Modest, Narrow-band based multi-scale full-spectrum k-distribution method for radiative transfer in inhomogeneous gas mixtures, ASME J. Heat Trans. 127 (2005), pp. 740–748.
  • M.F. Modest and R.J. Riazzi, Assembly of full-spectrum k-distributions from a narrow-band database; effects of mixing gases, gases and nongray absorbing particles, and mixtures with nongray scatterers in nongray enclosures, J. Quant. Spectrosc. & Rad. Trans. 90 (2005), pp. 169–189.
  • V.V. Toro, A.V. Mokhov, H.B. Levinsky, and M.D. Smooke, Combined experimental and computational study of laminar, axisymmetric hydrogen–air diffusion flames, Proc. Combust. Inst. 30 (2005), pp. 485–492.
  • T.S. Cheng, C.Y. Wu, C.P. Chen, Y.H. Li, Y.C. Chao, T. Yuan, and T.S. Leu, Detailed measurement and assessment of laminar hydrogen jet diffusion flames, Combust. Flame 146 (2006), pp. 268–282.
  • L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, and J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectr. & Rad. Trans. 111 (2010), pp. 2139–2150.
  • R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, and J.A. Miller, A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties, Tech. Rep. SAND86-8246, Sandia National Laboratory, 1986.
  • P.D. Neufeld, A.R. Janzen, and A.R. Aziz, Empirical equations to calculate 16 of the transport collision integrals ω(l, s)* for the Lennard–Jones (12–6) potential, J. Chem. Phys. 57 (1972), pp. 1100–1102.
  • P.N. Brown, G.D. Byrne, and A.C. Hindmarsh, Vode: A variable-coefficient ODE solver, SIAM J. Sci. Statist. Comput. 10 (1989), pp. 1038–1051.
  • A.C. Hindmarsh and R. Serban, User documentation for cvode v. 2.6.0, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 2009.
  • M.F. Modest, Narrow-band and full-spectrum k-distributions for radiative heat transfer – correlated-k vs. scaling approximation, J. Quant. Spectrosc. & Rad. Trans. 76 (2003), pp. 69–83.
  • A. Wang and M.F. Modest, High-accuracy, compact database of narrow-band k-distributions for water vapor and carbon dioxide, J. Quant. Spectr. & Rad. Trans. 93 (2005), pp. 245–261.
  • D.H.D. West, Updating mean and variance estimates: An improved method, Commun. ACM 22 (1979), pp. 532–535.
  • D. Bissel, Statistical Methods for SPC and TQM, Chapman and Hall, New York, 1994.
  • OpenFOAM® website, http://www.opencfd.co.uk/openfoam/.
  • R.S. Barlow and J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames, Proc. Combust. Inst. 27 (1998), pp. 1087–1095.
  • J. Cai, R. Marquez, and M. Modest, Comparisons of radiative heat transfer calculations in a jet diffusion flame using spherical harmonics and k-distributions, J. Heat Trans. 136 (2014). Available at http://dx.doi.org/10.1115/1.4026169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.