237
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation

&
Pages 627-651 | Received 14 Apr 2014, Accepted 24 Aug 2014, Published online: 16 Oct 2014

References

  • D.R. Ballal and A.H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distances, Proc. Combust. Inst. 15 (1975), pp. 1473–1481.
  • D.R. Ballal and A.H. Lefebvre, Ignition and flame quenching of flowing heterogeneous fuel–air mixtures, Combust. Flame, 35 (1979), pp. 155–168.
  • D.R. Ballal and A.H. Lefebvre, A general model of spark ignition for gaseous and liquid fuel air mixtures, Proc. Combust. Inst. 18 (1980), pp. 1737–1746.
  • A.D. Birch, D.R. Brown, and M.G. Dodson, Ignition probabilities in turbulent mixing flows, Proc. Combust. Inst. 18 (1981), pp. 1775–1780.
  • S.F. Ahmed and E. Mastorakos, Spark ignition of lifted turbulent jet flames, Combust. Flame 146 (2006), pp. 215–231.
  • S.F. Ahmed, R. Balachandran, and E. Mastorakos, Measurement of ignition probability in turbulent non-premixed counterflow flames, Proc. Combust. Inst. 31 (2007), pp. 1507–1513.
  • R.E. Alvani and M. Fairweather, Ignition characteristics of turbulent jet flows, Trans. IChemE, 80 (2002), pp. 917–923.
  • S.A. Rashkovsky, Spark ignition in imperfectly mixed reactants, in Proceedings of the 1st Mediterranean Combustion Symposium, Anatalya, Turkey, 1999, pp. 1403–1411.
  • H.G. Im and J.H. Chen, Structure and propagation of triple flames in partially premixed hydrogen air mixtures, Combust. Flame, 119 (1999), pp. 436–454.
  • J. Ray, H.N. Najm, and R.B. McCoy, Ignition front structure in a methane air jet, 2nd Joint Meeting of the US Section of the Combustion Institute, Oakland, CA, 2001, Paper no. 150.
  • R. Hilbert and D. Thevenin, DNS of multibrachial structures with detailed chemistry and transport, 9th International Conference on Numerical Combustion, Sorrento, Italy, 2002, Paper no. 064.
  • N. Chakraborty, E. Mastorakos, and R.S. Cant, Effect of turbulence on spark ignition in inhomogeneous mixtures – A direct numerical simulation study, Combust. Sci. Technol. 179(1–2) (2007), pp. 293–317.
  • N. Chakraborty and E. Mastorakos, direct numerical simulations of localised forced ignition in turbulent mixing layers: The effect of mixture fraction and its gradient, Flow Turbul. Combust. 80 (2008), pp. 55–186.
  • N. Chakraborty, H. Hesse, and E. Mastorakos, Effect of Lewis number on localised forced ignition of turbulent mixing layers, Flow Turbul. Combust. 84 (2008), pp. 125–166.
  • E.S. Richardson and E. Mastorakos, Numerical investigation of forced ignition in laminar counterflow non-premixed methane–air flames, Combust. Sci. Technol. 179(1–2) (2007), pp. 21–37.
  • E. Mastorakos, Ignition of turbulent non-premixed flames, Prog. Energy Combust. Sci. 35 (2009), pp. 57–97.
  • N. Swaminathan, R. Grout, and E. Mastorakos, Direct simulation of forced ignition in stratified turbulent mixture, 3rd European Combustion Meeting, Chania, Greece, 2007.
  • C. Pera, S. Chevillard, and J. Reveillon, Effect of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines, Combust. Flame 160 (2013), pp. 1020–1032.
  • J. Hélie and A. Trouvé, Turbulent flame propagation in partially premixed combustion, Proc. Combust. Inst. 27 (1998), pp. 891–898.
  • R. Grout, N. Swaminathan, and R.S. Cant, Effects of compositional fluctuations on premixed flames, Combust. Theory Model. 13(5) (2009), pp. 823–852.
  • S.P. Malkeson and N. Chakraborty, A priori direct numerical simulation analysis of algebraic models of variances and scalar dissipation rate for RANS simulations for low Damköhler number turbulent partially-premixed combustion, Combust. Sci. Technol. 182 (2010), pp. 960–999.
  • S.P. Malkeson and N. Chakraborty, A priori direct numerical simulation modelling of co-variance transport in turbulent stratified flames, Flow Turbul. Combust. 90 (2013), pp. 243–267.
  • J.H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorski, R. Sankaran, S. Shende, and C.S. Yoo, Terascale direct numerical simulations of turbulent combustion using S3D, Comput. Sci. & Discovery 2 (2009), Paper no. 015001. Available at http://iopscience.iop.org/1749--4699/2/1/015001/.
  • E. Tarrazo, A. Sanchez, A. Linan, and F.A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Combust. Flame, 147 (2006), pp. 32–38.
  • F.N. Egolfopoulos, P. Cho, and C.K. Law, Laminar flame speeds of methane–air mixtures under reduced and elevated pressures, Combust. Flame 76, (1989), pp. 375–391.
  • D. Haworth, R. Blint, B. Cuenot, and T. Poinsot, Numerical simulation of turbulent propane–air combustion with non-homogeneous reactants, Combust. Flame 121 (2000), pp. 395–417.
  • C. Jiménez, B. Cuenot, T. Poinsot, and D. Haworth, Direct numerical simulation and modelling for lean stratified propane–air flames, Combust. Flame 128 (2002), pp. 1–21.
  • S.P. Malkeson and N. Chakraborty, Statistical analysis of displacement speed in turbulent stratified flames: A direct numerical simulation study, Combust. Sci. Technol. 182 (2010), pp. 1841–1883.
  • H. Hesse, S.P. Malkeson, and N. Chakraborty, Displacement speed statistics for stratified mixture combustion in an igniting turbulent planar jet, ASME J. Engng – Gas Turbines & Power 134 (2012), Paper no. 051502. Available at http://dx.doi.org/10.1115/1.4005214.
  • T. Poinsot, T. Echekki, and M. Mungal, A study of the laminar flame tip and implications for turbulent premixed combustion, Combust. Sci. Technol. 81(1–3) (1992), pp. 45–73.
  • D.S. Louch and K.N.C. Bray, Vorticity in unsteady premixed flames: Vortex pair-premixed flame interactions under imposed body forces and various degrees of heat release and laminar flame thickness, Combust. Flame 125 (2001), pp. 1279–1309.
  • I.R. Gran, T. Echekki, and J.H. Chen, Negative flame speed in an unsteady 2-D premixed flame: A computational study, Proc. Combust. Inst. 26 (1998), pp. 211–218.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • C.V. Espí and A. Liñán, Fast, non-diffusive ignition of a gaseous reacting mixture subjected to a point energy source, Combust. Theory Model. 5 (2001), pp. 485–498.
  • T.C. Treurniet, F.T.M. Nieuwstadt, and B.S. Boersma, Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by G-equation, J. Fluid Mech. 565 (2006), pp. 25–62.
  • P. Schroll, E. Mastorakos, and R.S. Cant, Direct numerical simulations of autignition in turbulent two phase flows, Proc. Combust. Inst. 32 (2009), pp. 2275–2282.
  • A. Wandel, Extinction indicators in turbulent sprays, Proc. Combust. Inst. 34 (2013), pp. 1625–1632.
  • A. Wandel, Influence on scalar dissipation on flame success in turbulent sprays with spark ignition, Combust. Flame 161(10) (2014), pp. 2579–2600. Available at http://dx.doi.org/10.1016/ j.combustflame.2014.04.006.
  • R.W. Bilger, The structure of turbulent non-premixed flames, Proc. Combust. Inst. 23 (1988), pp. 475–488.
  • D.R. Ballal and A. Lefebvre, Spark ignition of turbulent flowing gases, 15th AIAA Aerospace Sciences Meeting, Los Angeles, 1977, Paper no. 77–185.
  • V. Eswaran and S.B. Pope, Direct numerical simulations of the turbulent mixing of a passive scalar, Phys. Fluids 31 (1988), pp. 506–520.
  • K.W. Jenkins and R.S. Cant, DNS of turbulent flame kernels, in Proceedings of the 2nd AFOSR Conference on DNS and LES, C. Liu, L. Sakell and T. Beautner, eds., Kluwer Academic, Boston, MA, 1999, pp. 192–202.
  • A. Neophytou, E. Mastorakos, and R.S. Cant, DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers, Combust. Flame 157 (2010), pp. 1071–1086.
  • R. Yu and X.-S. Bai, Direct numerical simulation of lean hydrogen/air auto-ignition in a constant volume enclosure, Combust. Flame 157 (2010), pp. 1071–1086.
  • T. Poinsot and S.K. Lele, Boundary conditions for direct simulation of compressible viscous flows, J. Comp. Phys. 101 (1992), pp. 104–129.
  • A.A. Wray, Minimal storage time advancement schemes for spectral methods, unpublished report, NASA Ames Research Center, CA, 1990.
  • R.W. Grout, An age-extended progress variable for conditioning reaction rates, Phys. Fluids, 19 (2007), pp. 105–107.
  • I. Han and K.H. Huh, Effects of Kalovitz number on the evolution of the flame surface density in turbulent premixed flames, Proc. Combust. Inst. 32 (2009), pp. 1419–1425.
  • H. Yamashita, M. Shimada, and T. Takeno, A numerical study on flame stability at the transition point of jet diffusion flames, Proc. Combust. Inst. 26 (1996), pp. 27–34.
  • E. Mastorakos, T.A. Baritaud, and T.J. Poinsot, Numerical simulations of autoignition in turbulent mixing flows, Combust. Flame, 109 (1997), pp. 198–223.
  • H.G. Im, J.H. Chen, and C.K. Law, Ignition of hydrogen–air mixing later in turbulent flows, Proc. Combust. Inst. 28 (1998), pp. 1047–1056.
  • S.R. Turns, An Introduction to Combustion: Concepts and Applications, 1st ed., McGraw-Hill, 1996.
  • B. Renou, E. Samson, and A.M. Boukhalfa, An experimental study of freely-propagating turbulent propane–air flames in stratified inhomogeneous mixtures, Combust. Sci. Technol. 176 (2004), pp. 1867–1891.
  • A.H. Lefebvre, Gas Turbine Combustion, 2nd ed., Taylor & Francis, Philadelphia, PA, 1998, pp. 50–57.
  • C.C. Huang, S.S. Shy, C.C. Liu, and Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007), pp. 1401–1409.
  • T. Poinsot, S. Candel, and A. Trouvé, Applications of direct numerical simulation to premixed turbulent combustion, Prog. Energy Combust. Sci. 21 (1995), pp. 531–576.
  • M. Klein, N. Chakraborty, and R.S. Cant, Effect of turbulence on self-sustained combustion in premixed flame kernels: A direct numerical simulation study, Flow Turbul. Combust. 81 (2008), pp. 583–607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.