576
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the Livengood–Wu integral for modelling autoignition in a high-pressure bomb

, , &
Pages 77-98 | Received 19 May 2015, Accepted 01 Nov 2015, Published online: 22 Dec 2015

References

  • D. Bradley and G.T. Kalghatgi, Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines, Combust. Flame 156 (2009), pp. 2307–2318.
  • G. Kalghatgi, L. Hildingsson, A.J. Harrison, and B. Johansson, Auto-ignition quality of gasoline fuels in partially premixed combustion in diesel engines, Proc. Combust. Inst. 33 (2011), pp. 3015–3021.
  • R.F. Cracknell, D.J. Rickeard, J. Ariztegui, K.D. Rose, M. Muether, M. Lamping, and A. Kolbeck, Advanced combustion for low emissions and high efficiency – Part 2: Impact of fuel properties on HCCI combustion, SAE Paper 2008-01-2404, 2008. Available at http://dx.doi.org/10.4271/2008-01-2404.
  • H.W. Won, Investigation of cluster-nozzle concepts for direct injection diesel engines, Ph.D. diss., RWTH Aachen University, 2010.
  • J. Ramos, Internal Combustion Engine Modeling, Hemisphere, New York, NY, 1989.
  • J. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York, NY, 1988.
  • H.K. Ciezki and G. Adomeit, Shock-tube investigation of self-ignition of n-heptane–air mixtures under engine relevant conditions, Combust. Flame 93(4) (1993), pp. 421–433.
  • G.T. Kalghatgi, Auto-ignition quality of practical fuels and implications for fuel requirements of future SI and HCCI engines, SAE Paper 2005-01-0239, 2005. Available at http://dx.doi.org/10.4271/2005-01-0239.
  • J.C. Livengood and P.C. Wu, Correlation of autoignition phenomena in internal combustion engines and rapid compression machines, Symp. (Int.) Combust. 5 (1955), pp. 347–356.
  • Y. Nakagawa, Y. Takagi, T. Itoh, and T. Iijima, Laser shadowgraphic analysis of knocking in S.I. engine, SAE Paper No. 845001, 1984. Available at http://dx.doi.org/10.4271/845001.
  • G. König, R.R. Maly, D. Bradley, A.K.C. Lau, and C.G.W. Sheppard, Role of exothermic centres on knock initiation and knock damage, SAE Paper No. 902136, Vol. 99 (1990), pp. 840–861. Available at http://dx.doi.org/10.4271/902136.
  • G. König and C.G.W. Sheppard, End gas autoignition and knock in a spark ignition engine, SAE Paper No. 902135, 1990. Available at http://dx.doi.org/10.4271/902135.
  • J. Pan, C.G.W. Sheppard, A. Tindall, M. Berzins, S.V. Pennington, and J.M. Ware, End gas inhomogeneity, autoignition and knock, SAE Paper No. 982616, 1998. Available at http://dx.doi.org/10.4271/982616.
  • N. Kawahara, E. Tomita, and Y. Sakata, Auto-ignited kernels during knocking combustion in a spark-ignition engine, Proc. Combust. Inst. 31 (2007), pp. 2999–3006.
  • B. Bäuerle, F. Hoffman, F. Behrendt, and J. Warnatz, Detection of hot spots in the end gas of an internal combustion engine using two-dimensional LIF of formaldehyde, Proc. Combust. Inst. 25 (1994), pp. 1–12.
  • J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine, Proc. Combust. Inst. 29 (2002), pp. 679–685.
  • J.C.G. Andrae, T. Brinck, and G.T. Kalghatgi, HCCI experiments with toluene reference fuels modelled by a semidetailed chemical kinetic model, Combust. Flame 155 (2008), pp. 696–712.
  • J. Herzler, M. Fikri, K. Hitzbleck, R. Starke, C. Schulz, P. Roth, and G.T. Kalghatgi, Shock-tube study of the autoignition of n-heptane/toluene/air mixtures at intermediate temperatures and high pressures, Combust. Flame 149 (2007), pp. 25–31.
  • D.F. Davidson, B.M. Gauthier, and R.K. Hanson, Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proc. Combust. Inst. 30 (2005), pp. 1175–1182.
  • B.M. Gauthier, D.F. Davidson, and R.K. Hanson, Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures, Combust. Flame 139 (2004), pp. 300–311.
  • G.T. Kalghatgi, P. Risberg, and H.E. Ångström, A method of defining ignition quality of fuels in HCCI engines, SAE Paper 2003-01-1816, 2003. Available at http://dx.doi.org/10.4271/2003-01-1816.
  • G.T. Kalghatgi and R.A. Head, The available and required autoignition quality of gasoline-like fuels in HCCI engines at high temperatures, SAE Paper 2004-01-1969, 2004. Available at http://dx.doi.org/10.4271/2004-01-1969.
  • STAR-CD Version 4.08 Documentation, CD-Adapco, 2008.
  • Ya.B. Zel’dovich, V.B. Librovich, G.M. Makhviladze, and G.I. Sivashinsky, On the development of detonation in non-uniformly preheated gas, Astronautica Acta 15 (1970), pp. 313–321.
  • J.A. van Oijen, Flamelet-generated manifolds: Development and application to premixed laminar flames, Ph.D. diss., Technische Universiteit Eindhoven, The Netherlands, 2002.
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264. Available at https://www3.nd.edu/powers/ame.60636/maas1992.pdf.
  • N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21 (1988), pp. 1231–1250.
  • O. Gicquel, N. Darabiha, and D. Thevenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28 (2000), pp. 1901–1908.
  • C.D. Pierce, Progress-variable approach for large-eddy simulation of turbulent combustion, Ph.D. thesis, Stanford University, 2001.
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97.
  • D. Bradley, L.K. Lwa, A.K.C. Lau, M. Missaghi, and S.B. Chin, Laminar flamelet modeling of recirculating premixed methane and propane–air combustion, Combust. Flame 71(2) (1988), pp. 109–122.
  • A.W. Vreman, B.A. Albrecht, J.A. van Oijen, L.P.H. de Goey, and R.J.M. Bastiaans, Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F, Combust. Flame 153 (2008), pp. 394–416.
  • S. Delhaye, L.M.T. Somers, J.A. van Oijen, and L.P.H. de Goey, Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds, Proc. Combust. Inst. 32 (2009), pp. 1051–1058.
  • B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combust. Flame 140 (2005), pp. 147–160.
  • R. Cónsul, A. Oliva, C.D. Pérez-Segarra, D. Carbonell, and L.P.H. de Goey, Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames, Combust. Flame 153 (2008), pp. 71–83.
  • P.-D. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame 157 (2010), pp. 43–61.
  • W.J.S. Ramaekers, J.A. van Oijen, and L.P.H. de Goey, A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames, Flow Turbul. Combust. 84 (2010), pp. 439–458.
  • C. Bekdemir, L.M.T. Somers, and L.P.H. de Goey, Modeling diesel engine combustion using pressure dependent flamelet generated manifolds, Proc. Combust. Inst. 33 (2011), pp. 2887–2894.
  • R. Kulkarni, M. Zellhuber, and W. Polifke, LES based investigation of autoignition in turbulent co-flow configurations, in Proceedings of the 5th European Combustion Meeting (ECM2011), Cardiff, UK, 2011.
  • E. Knudsen and H. Pitsch, A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion, Combust. Flame 156 (2009), pp. 678–696.
  • L.M.T. Somers, A.V. Evlampiev, and L.P.H. de Goey, Modelling auto-ignition of automotive fuels using detailed mechanisms, in Proceedings of the 3rd European Combustion Meeting (ECM2007), Chania, Greece, 2007, pp. 22–14.
  • R.D. Reitz and R. Diwakar, Structure of high-pressure fuel sprays, SAE Paper 870598, 1987. Available at http://dx.doi.org/10.4271/870598.
  • Y.M. Wright, O.-N. Margari, K. Boulouchos, G.De Paola, and E. Mastorakos, Experiments and simulations of n-heptane spray auto-ignition in a closed combustion chamber at diesel engine conditions, Flow Turbul. Combust. 84 (2010), pp. 48–78.
  • A.W. Cook and J.J. Riley, A subgrid model for equilibrium chemistry in turbulent flows, Phys. Fluids 6 (1994), pp. 2868–2870.
  • Z. Hu, L.M.T. Somers, T. Davies, A. McDougall, and R.F. Cracknell, A study of liquid fuel injection and combustion in a constant volume vessel at diesel engine conditions, Fuel 107(05) (2013), pp. 63–73.
  • D. Bradley, C. Morley, X.J. Gu, and D.R. Emerson, Amplified pressure waves during autoignition: Relevance to CAI engines, SAE Paper 2002-01-2868, 2002. Available at http://dx.doi.org/10.4271/2002-01-2868.
  • X.J. Gu, D.R. Emerson, and D. Bradley, Modes of reaction front propagation from hot spots, Combust. Flame 133 (2003), pp. 63–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.