312
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of flame thickness variation on the mass burning rate of premixed counterflow flames with an oscillating strain rate

, , &
Pages 173-188 | Received 23 Jun 2015, Accepted 13 Oct 2015, Published online: 22 Dec 2015

References

  • P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci. 11 (1985), pp. 1–59.
  • A. Lipatnikov, Some issues of using Markstein number for modeling premixed turbulent combustion, Combust. Sci. Technol. 119 (1996), pp. (131–154).
  • D.R. Dowdy, D. B. Smith, S.C. Taylor, and A. Williams, The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen–air mixtures, Proc. Combust. Inst. 23 (1990), pp. (325–332).
  • S.C. Taylor, Burning velocity and the influence of flame stretch, Ph.D. thesis, Department of Fuel and Energy, University of Leeds, 1991. http://core.ac.uk/download/pdf/1146102.pdf.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed., Edwards, 2005.
  • G. Dixon-Lewis, Structure of laminar flames, Symp. (Int.) Combust. 23 (1990), pp. (305–324).
  • C.A. Petrov and A.F. Gonheim, The transient response of strained laminar-premixed flames, Combust. Flame 102 (1995), pp. (401–437).
  • S.G. Davis and G. Searby, The use of counterflow flames for the evaluation of burning velocities and stretch effects in hydrogen/air mixtures, Combust. Sci. Technol. 174 (2002), pp. (93–110).
  • A.A. Konnov, M. Idir, J.L. Delfau, and C. Vovelle, Experimental study of extinction of nonadiabatic counterflow premixed flames, Combust. Flame 105 (1996), pp. (308–320).
  • A. Fayoux, K. Zahringerc, O. Gicquela, and J.C. Rolona, Experimental and numerical determination of heat release in counterflow premixed laminar flames, Proc. Combust. Inst. 30 (2005), pp. (251–257). http://dx.doi.org/10.1016/j.proci.2004.08.210.
  • C.M. Vagelopoulos and F.N. Egolfopoulos, Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, Symp. (Int.) Combust. 25 (1994), pp. (1341–1347).
  • N. Peters, Turbulent Combustion, Cambridge Monographs on Mechanics, Cambridge University Press, 2000.
  • H. Pitsch, A G-equation formulation for large-eddy simulation of premixed turbulent combustion, Annual Research Briefs, Center for Turbulence Research, Stanford, CA, 2008. https://web.stanford.edu/group/ctr/ResBriefs02/pitsch
  • M.L. Bondar, acoustically perturbed bunsen flames: Modelling, analytical investigations and numerical simulations, Ph.D. thesis, Technische Universiteit Eindhoven, 2007. http://alexandria.tue.nl/extra2/200711687.pdf.
  • J.A. van Oijen, Flamelet-generated manifolds: Development and Application to premixed laminar flames, Ph.D. thesis, Combustion Technology, Eindhoven University of Technology, 2002.
  • T. Echekki and J.H. Chen, Unsteady strain rate and curvature effects in turbulent premixed methane–air flames, Combust. Flame 106 (1996), pp. (184–202).
  • H.G. Im, J.K. Bechtold, and C.K. Law, Response of counterflow premixed flame to oscillating strain rates, Combust. Flame 105 (1996), pp. (358–372).
  • F.N. Egolfopoulos and C.S. Campbell, Unsteady counterflow strained diffusion flames: Diffusion-limited frequency response., J. Fluid Mech. 318 (1996), pp. (1–29).
  • C.J. Sung and C.K. Law, Structural sensitivity, response, and extinction of diffusion and premixed flames in oscillating counterflow, Combust. Flame 123 (2000), pp. (375–388).
  • D.C. Haworth, M.C. Drake, S.B. Pope, and R.J. Blint, The importance of time-dependent flames structures in stretched laminar flamelet models for turbulent jet diffusion flames, Symp. (Int.) Combust. 22 (1988), pp. (589–597).
  • G. Stahl and J. Warnatz, Numerical investigation of time-dependent properties and extinction of strained methane– and propane–air flamelets, Combust. Flame 85 (1991), pp. (285–299).
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Extinction of laminar, premixed, counter-flow methane/air flames under unsteady conditions: Effect of H2 addition, Chem. Engrg Sci. 93 (2013), pp. (266–276).
  • J.M. Plaia, Response of premixed hydrocarbon flames with and without hydrogen addition to steady and oscillatory strain rates, Ph.D. thesis, University of Maryland, 2005. http://drum.lib.umd.edu/bitstream/handle/1903/3101/umi-umd-2912.pdf;jsessionid=49DB8F818BC2EBE8E31B18429625C331?sequence=1.
  • Z. Huang, J. K. Bechtold, and M. Matalon, Weakly stretched premixed flame in oscillating flows, Combust. Theory Model. 2 (1998), pp. (115–133).
  • J.H. Tien and M. Matalon, On the burning velocity of stretched flames, Combust. Flame 84 (1991), pp. (238–248).
  • L.P.H. de Goey and J.H.M. ten Thije Boonkkamp, A mass-based definition of flame stretch for flames with finite thickness, Combust. Sci. Technol. 122 (1997), pp. (399–405).
  • L.P.H. de Goey and J.H.M. ten Thije Boonkkamp (1999), A flamelet description of premixed laminar flames and the relation with flame stretch, Combust. Flame 119, pp. 253–271.
  • S.H. Chung and C.K. Law, An integral analysis of the structure and propagation of stretched premixed flames, Combust. Flame 72 (1996), pp. (325–336).
  • L.P.H. de Goey and J.H.M. ten Thije Boonkkamp, Mass burning rate of premixed stretched flames: Integral analysis versus large activation-energy asymptotics, J. Engrg Math. 62 (2008), pp. (67–84).
  • J.A. van Oijen and L.P.H. de Goey, Modelling of premixed counterflow flames using the flamelet-generated manifold method, Combust. Theory Model. 6 (2002), pp. (463–478).
  • J.A.M. de Swart, G.R.A. Groot, J.A. van Oijen, J.H.M. ten Thije Boonkkamp, and L.P.H. de Goey, Detailed analysis of the mass burning rate of stretched flames including preferential diffusion effects, Combust. Flame 145 (2006), pp. (245–258).
  • L.P.H. de Goey, J.A. van Oijen, V.N. Kornilov, and J.H.M. ten Thije Boonkkamp, Propagation, dynamics and control of laminar premixed flames, Proc. Combust. Inst. 33 (2011), pp. (863–886).
  • L.M.T. Somers, The simulation of flat flames with detailed and reduced chemical models, Ph.D. thesis, Technische Universiteit Eindhoven, 1994. http://alexandria.tue.nl/repository/books/420430.pdf.
  • E. Abtahizadeh, Numerical study of mild combustion from laminar flames to large eddy simulation of turbulent flames with flamelet generated manifolds, Ph.D. thesis, Technische Universiteit Eindhoven, 2014. http://alexandria.tue.nl/extra2/766361.pdf.
  • F. Dinkelacker, B. Manickam, and S.P.R. Muppala, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach, Combust. Flame 158 (2011), pp. (1742–1749).
  • A. Kazajov and M. Frenklach. http://combustion.berkeley.edu/drm/
  • G. Sankaran and H.G. Im, Dynamic flammability limits of methane–air premixed flames with mixture composition fluctuations, Proc. Combust. Inst. 29 (2002), pp. (77–84).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.