369
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of premixed H2–air cellular tubular flames

&
Pages 328-348 | Received 15 Sep 2015, Accepted 23 Nov 2015, Published online: 23 Feb 2016

References

  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38 (2006), pp. 453–482.
  • N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21 (1988), pp. 1231–1250.
  • J. Hirschfelder and C. Curtiss, Theory of propagation of flames. Part I: General equations, Symp. Combust. Flame & Explos. Phenom. 3 (1948), pp. 121–127.
  • M.D. Smooke, The computation of laminar flames, Proc. Combust. Inst. 34 (2013), pp. 65–98.
  • S. Ishizuka, D. Dunn-Rankin, R.W. Pitz, R.J. Kee, Y. Zhang, H. Zhu, T. Takeno, M. Nishioka, and D. Shimokuri, Tubular Combustion, Momentum Press, New York, 2013.
  • Y. Wang, S. Hu, and R.W. Pitz, Extinction and cellular instability of premixed tubular flames, Proc. Combust. Inst. 32 (2009), pp. 1141–1147.
  • A.E. Lutz, R.J. Kee, J.F. Grcar, and F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames, Tech. Rep. SAND96-8243, Sandia National Laboratories, Livermore, CA, 1997.
  • R.W. Pitz, S. Hu, and P. Wang, Tubular premixed and diffusion flames: Effect of stretch and curvature, Prog. Energy Combust. Sci. 42 (2014), pp. 1–34.
  • D.M. Mosbacher, J.A. Wehrmeyer, R.W. Pitz, C.J. Sung, and J.L. Byrd, Experimental and numerical investigation of premixed tubular flames, Proc. Combust. Inst. 29 (2002), pp. 1479–1486.
  • S. Hu, P. Wang, and R.W. Pitz, A structural study of premixed tubular flames, Proc. Combust. Inst. 32 (2009), pp. 1133–1140.
  • C.A. Hall, W.D. Kulatilaka, J.R. Gord, and R.W. Pitz, Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames, Combust. Flame 161 (2014), pp. 2924–2932.
  • C.A. Hall and R.W. Pitz, A structural study of premixed hydrogen–air cellular tubular flames, Proc. Combust. Inst. 34 (2013), pp. 973–980.
  • C.A. Hall, W.D. Kulatilaka, N. Jiang, J.R. Gord, and R.W. Pitz, Minor-species structure of premixed cellular tubular flames, Proc. Combust. Inst. 35 (2015), pp. 1107–1114.
  • H. Schlicting, Exact solutions of the Navier-Stokes equations, in Boundary-Layer Theory, 7th ed., McGraw Hill, New York, 1979, pp. 95–99.
  • S. Ishizuka, Characteristics of tubular flames, Prog. Energy Combust. Sci. 19 (1993), pp. 187–226.
  • V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, MA, 1999.
  • G. Billet, V. Giovangigli, and G. de Gassowski, Impact of volume viscosity on a shock–hydrogen-bubble interaction, Combust. Theory Model. 12 (2008), pp. 221–248.
  • U. Niemann, K. Seshadri, and F.A. Williams, Accuracies of laminar counterflow flame experiments, Combust. Flame 162 (2015), pp. 1540–1549.
  • J.M. Bergthorson, K. Sone, T.W. Mattner, P.E. Dimotakis, D.G. Goodwin, and D.I. Meiron, Impinging laminar jets at moderate Reynolds numbers and separation distances, Phys. Rev. E: Pt 2, Stat. Nonlin. Soft Matter Phys. 72 (2005), pp. 1–12.
  • C. Frouzakis, J. Lee, A. Tomboulides, and K. Boulouchos, Two-dimensional direct numerical simulation of opposed-jet hydrogen–air diffusion flame, Proc. Combust. Inst. 27 (1998), pp. 571–577.
  • B. Sarnacki, G. Esposito, R. Krauss, and H. Chelliah, Extinction limits and associated uncertainties of nonpremixed counterflow flames of methane, ethylene, propylene and n-butane in air, Combust. Flame 159 (2012), pp. 1026–1043.
  • M.D. Smooke and V. Giovangigli, Extinction of tubular premixed laminar flames with complex chemistry, Proc. Combust. Inst. 23 (1990), pp. 447–454.
  • R. Barlow, A. Karpetis, J. Frank, and J.Y. Chen, Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames, Combust. Flame 127 (2001), pp. 2102–2118.
  • R.J. Kee, F.M. Rupley, E. Meeks, and J.A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Tech. Rep. SAND89-8009, Sandia National Laboratories, Livermore, CA, 1989.
  • M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, and S.J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinetics 44 (2012), pp. 444–474.
  • K. Yamamoto, T. Hirano, and S. Ishiuka, Effects of pressure diffusion on the characteristics of tubular flames, Proc. Combust. Inst. 26 (1996), pp. 1129–1135.
  • A. Ern and V. Giovangigli, Fast and accurate multicomponent transport property evaluation, J. Comput. Phys. 120 (1995), pp. 105–116.
  • B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Math. Comput. 51 (1988), pp. 699–706.
  • M.D. Smooke, Solution of burner-stabilized premixed laminar flames by boundary value methods, J. Comput. Phys. 48 (1982), pp. 72–105.
  • M.S. Day and J.B. Bell, Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Model. 4 (2000), pp. 535–556.
  • B.A.V. Bennett and M.D. Smooke, Local rectangular refinement with application to nonreacting and reacting fluid flow problems, J. Comput. Phys. 151 (1999), pp. 684–727.
  • B.A. Bennett, Z. Cheng, R.W. Pitz, and M. Smooke, Computational and experimental study of oxygen-enhanced axisymmetric laminar methane flames, Combust. Theory Model. 12 (2008), pp. 497–527.
  • T.S. Coffey, C.T. Kelley, and D.E. Keyes, Pseudotransient continuation and differential-algebraic equations, SIAM J. Sci. Comput. 25 (2003), pp. 553–569.
  • X.C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput. 21 (1999), pp. 792–797.
  • Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), pp. 856–869.
  • S. Balay, W.D. Gropp, L.C. McInnes, and B.F. Smith, The Portable Extensible Toolkit for Scientific Computing.
  • Y. Xu, M.D. Smooke, P. Lin, and M.B. Long, Primitive variable modeling of multidimensional laminar flames, Combust. Sci. Technol. 90 (1993), pp. 289–313.
  • S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
  • P. Wang, J.A. Wehrmeyer, and R.W. Pitz, Stretch rate of tubular premixed flames, Combust. Flame 145 (2006), pp. 401–414.
  • L. de Goey, R. Mallens, and J. Ten Thije Boonkkamp, An evaluation of different contributions to flame stretch for stationary premixed flames, Combust. Flame 110 (1997), pp. 54–66.
  • H. Chelliah, C. Law, T. Ueda, M. Smooke, and F. Williams, An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane–air–nitrogen diffusion flames, Symp. (Int.) Combust. 23 (1991), pp. 503–511.
  • K. Kohse-Höinghaus, Laser techniques for the quantitative detection of reactive intermediates in combustion systems, Prog. Energy Combust. Sci. 20 (1994), pp. 203–279.
  • G.P. Smith, J. Luque, C. Park, J.B. Jeffries, and D.R. Crosley, Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence, Combust. Flame 131 (2002), pp. 59–69.
  • V.N. Kurdyumov, Diffusive-thermal instability of premixed tubular flames, Combust. Flame 158 (2011), pp. 1718–1726.
  • G.J. Sharpe and S.A.E.G. Falle, Nonlinear cellular instabilities of planar premixed flames: Numerical simulations of the reactive Navier–Stokes equations, Combust. Theory Model. 10 (2006), pp. 483–514.
  • A. Ern and V. Giovangigli, Impact of detailed multicomponent transport on planar and counterflow hydrogen/air and methane/air flames, Combust. Sci. Technol. 149 (1999), pp. 157–181.
  • F. Yang, C. Law, C. Sung, and H. Zhang, A mechanistic study of Soret diffusion in hydrogen–air flames, Combust. Flame 157 (2010), pp. 192–200.
  • J. Grcar, J. Bell, and M. Day, The Soret effect in naturally propagating, premixed, lean, hydrogen–air flames, Proc. Combust. Inst. 32 (2009), pp. 1173–1180.
  • J. de Charentenay and A. Ern, Multicomponent transport impact on turbulent premixed H2/O2 flames, Combust. Theory Model. 6 (2002), pp. 439–462.
  • A. Ern and V. Giovangigli, Thermal diffusion effects in hydrogen–air and methane–air flames, Combust. Theory Model. 2 (1998), pp. 349–372.
  • R.J. Kee, J.F. Grcar, M.D. Smooke, and J.A. Miller, PREMIX: A Fortran program for modeling steady one-dimensional premixed flames, Tech. Rep. SAND85-8240, Sandia National Laboratories, Livermore, CA, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.