591
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

, , &
Pages 457-485 | Received 24 Mar 2015, Accepted 14 Jan 2016, Published online: 01 Mar 2016

References

  • A.H. Lefebvre and D.R. Ballal, Gas Turbine Combustion: Alternative Fuels and Emissions. CRC Press, Boca Raton, FL, 2010.
  • B.L. Koff, Gas turbine technology evolution: A designer's perspective, J. Propul. Power 20 (2004), pp. 577–595.
  • V.K. Arghode and A.K. Gupta, Development of high intensity CDC combustor for gas turbine engines, Appl. Energy 88 (2011), pp. 963–973.
  • F. di Mare, W.P. Jones, and K.R. Menzies, Large eddy simulation of a model gas turbine combustor, Combust Flame 137 (2004), pp. 278–294.
  • P. Moin and S.V. Apte, Large-eddy simulation for realistic gas turbine combustors, AIAA J. 44 (2006), pp. 698–708.
  • G. Boudier, L.Y.M. Gicquel, T. Poinsot, D. Bissières, C. Bérat, Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber, Proc. Combust. Inst. 31 (2007), pp. 3075–3082.
  • M. Boileau, S. Pascaud, E. Riber, B. Cuenot, L. Y. M. Gicquel, T. J. Poinsot, and M. Cazalens, Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines, Flow Turbul. Combust. 80 (2008), pp. 291–321.
  • Y. Eldrainy, K.M. Saqr, H.S. Aly, T.M. Lazim, and M.N.M. Jaafar, Large eddy simulation and preliminary modeling of the flow downstream a variable geometry swirler for gas turbine combustors, Int. Comm. Heat Mass Transfer 38(8) (2011), pp. 1104–1109.
  • W.P. Jones, S. Lyra, and S. Navarro-Martinez, Large eddy simulation of a swirl stabilized spray flame, Proc. Combust. Inst. 33 (2011), pp. 2153–2160.
  • W.P. Jones, S. Lyra, and S. Navarro-Martinez, Numerical investigation of swirling kerosene spray flames using large eddy simulation, Combust. Flame 159 (2012), pp. 1539–1561.
  • W.P. Jones, A.J. Marquis, and K. Vogiatzaki, Large-eddy simulation of spray combustion in a gas turbine combustor, Combust. Flame 161 (2014), pp. 222–239.
  • A.M. Kempf, B.J. Geurts, T. Ma, M.W.A. Pettit, and O.T. Stein, Quality issues in combustion LES, J. Sci. Comput. 49 (2011), pp. 51–64.
  • J. Floyd, A.M. Kempf, A. Kronenburg, and R.H. Ram, A simple model for the filtered density function for passive scalar combustion LES, Combust. Theory Model. 13(4) (2009), pp. 559–588.
  • M.E. Mueller and H. Pitsch, Large eddy simulation of soot evolution in an aircraft combustor, Phys. Fluids 25 (2013), Art. No. 110812, pp. 1–20.
  • A.K. Tolpadi, Calculation of two phase flow in gas turbine combustor, ASME J. Engrs. Gas Turbine Power 117 (1995), pp. 695–703.
  • A. Datta and S.K. Som, Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions, Appl. Therm. Eng. 19(1999), pp. 949–967.
  • S. De, K.N. Lakshmisha, and R.W. Bilger. Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach, Combust. Flame 158 (2011), pp. 1992–2008.
  • K. Van Maele, B. Merci, and E. Dick, Comparative Study of k-ϵ Turbulence Models in Inert and Reacting Swirling Flows, 33rd AIAA Fluid Dynamics Conference and Exhibit, Oriando, FL, 23–26 June 2003.
  • A. De, E. Oldenhof, P. Sathiah, D. Roekaerts, Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the eddy dissipation concept model for turbulence-chemistry interaction, Flow Turbul. Combust. 87 (2011), pp. 537–567.
  • L.C.B.S. Reis, J.A. Carvalho Jr., M.A.R. Nascimento, L.O. Rodrigues, F.L.G. Dias, P.M. Sobrinho, Numerical modeling of flow through an industrial burner orifice, Appl. Therm. Eng. 67 (2014), pp. 201–213.
  • R. Prieler, M. Demuth, D. Spoljaric, and C. Hochenauer, Numerical investigation of the steady flamelet approach under different combustion environments, Fuel 140 (2015), pp. 731–743.
  • D. Joung and K.Y. Huh, Numerical Simulation of Non-Reacting and Reacting Flows in a 5 MW Commercial Gas Turbine Combustor, ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, June 8–12, 2009.
  • B. Rohani and K.M. Saqr, Effects of hydrogen addition on the structure and pollutant emissions of a turbulent unconfined swirling flame, Int. Comm. Heat Mass Transfer 39 (2012), pp. 681–688.
  • H. Zeinivand and F. Bazdidi-Tehrani, Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor, Applied Energy 92 (2012), pp. 348–360.
  • J. Reveillon and L. Vervisch, Spray vaporization in Nonpremixed Turbulent Combustion Modeling: A Single Droplet Model, Combust. Flame 121 (2000), pp. 75–90.
  • J.H.W. Lau, Comparison of Pdf and Eddy-dissipation Combustion Models Applied to a Propane Jet Flame, Combust. Flame 102 (1995), pp. 209–215.
  • L. Chen, A.F. Ghoniem, Modeling CO2 Chemical Effects on CO Formation in Oxy-Fuel Diffusion Flames using Detailed Quasi-global and Global Reaction Mechanisms, Combust. Sci. Technology 186 (2014), pp. 829–848.
  • C. Hollmann and E. Gutheil, Modeling of turbulent spray diffusion flames including detailed chemistry, Symp. (Int.) Combust. 26 (1996), pp. 1731–1738.
  • R.W. Bilger, S.B. Pope, K.N.C. Bray, and J.M. Driscoll, Paradigms in turbulent combustion, Proc. Combust. Inst. 30 (2005), pp. 21–42.
  • B. Cuenot, The flamelet model for non-premixed combustion, in Turbulent Combustion Modeling, Fluid Mechanics and Its Applications, T. Echekki and E. Mastorakos, eds., Vol. 95, Springer, New York, 2011, pp. 43–61.
  • P. Ghose, J. Patra, A. Datta, and A. Mukhopadhyay, Effect of air flow distribution on soot formation and radiative heat transfer in a model liquid fuel spray combustor firing kerosene, Int. J. Heat Mass Transfer 74 (2014), pp. 143–155.
  • H. Richter and J.B. Howard, Formation of polycyclic aromatic hydrocarbos and their growth to soot – a review of chemical reaction pathways, Prog. Energy Combust. Sci. 26 (2000), pp. 565–608.
  • I.M. Kennedy, W. Kollmann and J.Y. Chen, A model for the soot formation in laminar diffusion flame, Combust. Flame 81 (1990), pp. 73–85.
  • J.B. Moss, C.D. Stewart and K.J. Young, Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions, Combust. Flame 101 (1995), pp. 491–500.
  • S.J. Brookes and J.B. Moss, Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames, Combust. Flame 116 (1999), pp. 486–503.
  • M.D. Domenico, P. Gerlinger, and M. Aigner, Development and validation of a new soot formation model for gas turbine combustor simulations, Combust. Flame 157 (2010), pp. 246–258.
  • Z. Wen, S. Yun, M.J. Thomson, and M.F. Lightstone, Modeling soot formation in turbulent kerosene/air jet diffusion flames, Combust. Flame 135 (2003), pp. 323–340.
  • K.J. Young, C.D. Stewart, and J.B. Moss, Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: Experimental measurement, Symp. (Int.) Combust. 25 (1994), pp. 609–617.
  • J.B. Moss and I.M. Aksit, Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel, Proc. Combust. Inst. 31 (2007), pp. 3139–3146.
  • K.B. Lee, M.W. Thring, and J.M. Beer, On the rate of combustion of soot in a laminar soot flame, Combust. Flame 6 (1962), pp. 137–145.
  • C.P. Fenimore and G.W. Jones, Oxidation of soot by hydroxyl radicals, J. Phys. Chem. 71 (1967), pp. 593–597.
  • H. Watanabe, R. Kurose, S. Komori, and H. Pitsch, Effects of radiation on spray flame characteristics and soot formation, Combust. Flame 152 (2008), pp. 2–13.
  • C.E. Choi and S.W. Baek, Numerical analysis of a spray combustion with nongray radiation using weighted sum of gray gases model, Combust. Sci. Technol. 115 (1996), pp. 297–315.
  • A.E.E. Khalil and A.K. Gupta, Swirling distributed combustion for clean energy conversion in gas turbine applications, Appl. Energy 88 (2011), pp. 3685–3693.
  • T. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu, A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows, Computers Fluids 24 (1995), pp. 227–238.
  • D.P. Schmidt, I. Nouar, P.K. Senecal, C.J. Rutland, J.K. Martin, R.D. Reitz, and J.A. Hoffman, Pressure swirl atomization in the near field, SAE Paper 1999-01-0496 (1999).
  • M.F. Modest, Radiative Heat Transfer, Second edition, vol. 1, McGraw-Hill Inc., New York, NY, 1993.
  • P.K. Senecal, D.P. Schmidt, I. Nouar, C.J. Rutland, R.D. Reitz, M.L. Corradini, Modeling high-speed viscous liquid sheet atomization, Int. J. Multiphase Flow 25 (1999), pp. 1073–1097.
  • A.H. Lefebvre, and X.F. Wang, Mean drop sizes from pressure-swirl nozzles, J. Propul. Power 3 (1987), pp. 11–18.
  • W.E. Ranz and W.R. Marshall Jr., Evaporation from drops, part I and part II. Chem. Eng. Prog. 48 (1952), pp. 173–180.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2004.
  • H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second Edition, Pearson Education, Harlow, England, 2007.
  • J. Janicka and N. Peters, Prediction of turbulent jet diffusion flame lift-off using a pdf transport equation, Nineteenth Symposium (International) on Combustion, pages 367–374, The Combustion Institute, Pittsburgh, 1982.
  • K.P. Kundu, P.F. Penko and S.L. Yang, Simplified Jet-A/Air combustion mechanisms for calculation of NOx emissions, AIAA-98-3986 (1998).
  • ANSYS Fluent 13.0 theory guide, 2013, Software available at www.ansys.com.
  • K.N.C. Bray and N. Peters, Laminar flamelets in turbulent flames, in Turbulent Reacting Flows, P.A. Libby and F.A. Williams, eds., Chapter 2, Academic Press, London, 1994, pp. 63–94.
  • ANSYS Fluent 13.0 user's guide, 2013, software available on www.ansys.com.
  • A. Basak, J. Patra, R. Ganguly, and A. Datta, Effect of transesterification of vegetable oil on liquid flow number and spray cone angle for pressure and twin fluid atomizers, Fuel 112 (2013), pp. 347–354.
  • A.H. Lefebvre, Atomization and Sprays, Hemisphere Publishing Corporation, New York, NY, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.