970
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A multipurpose reduced chemical-kinetic mechanism for methanol combustion

, , &
Pages 613-631 | Received 29 Jul 2015, Accepted 23 Feb 2016, Published online: 24 May 2016

References

  • J. Vancoillie, J. Demuynck, L. Sileghem, M. Van De Ginste, S. Verhelst, L. Brabant, and L. Van Hoorebeke, The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines, Appl. Energy 102 (2013), pp. 140–149.
  • T. Fleisch, C. McCarthy, A. Basu, C. Udovich, P. Charbonneau, W. Slodowske, S.-E. Mikkelsen, and J. McCandless, A new clean diesel technology: demonstration of ULEV emissions on a Navistar diesel engine fueled with dimethyl ether, SAE Technical Paper 950061, Society of Automotive Engineers, 1995. Available at http://dx.doi.org/10.4271/950061.
  • M.J. Brusstar and C.L. Gray Jr, High efficiency with future alcohol fuels in a stoichiometric medium duty spark ignition engine, SAE Technical Paper 2007-01-3993, Society of Automotive Engineers, 2007. Available at http://dx.doi.org/10.4271/2007-01-3993.
  • C.K. Westbrook and F.L. Dryer, A comprehensive mechanism for methanol oxidation, Combust. Sci. Technol. 20 (1979), pp. 125–140.
  • S.Y. Liao, H.M. Li, L. Mi, X.H. Shi, G. Wang, Q. Cheng, and C. Yuan, Development and validation of a reduced chemical kinetic model for methanol oxidation, Energy & Fuels 25 (2011), pp. 60–71.
  • C.M. Mueller and N. Peters, Reduced kinetic mechanisms for premixed methanol flames, in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters and B. Rogg, eds., Springer-Verlag, New York, 1993, pp. 142–155.
  • G. Paczko, P.M. Lefdal, and N. Peters, Reduced reaction schemes for methane, methanol and propane flames, Proc. Combust. Inst. 21 (1986), pp. 739–748.
  • J.-Y. Chen, Reduced reaction mechanisms for methanol–air diffusion flames, Combust. Sci. Technol. 78 (1991), pp. 127–145.
  • C.M. Mueller, K. Seshadri, and J.Y. Chen, Reduced kinetic mechanisms for counterflow methanol diffusion flames, in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters and B. Rogg, eds., Springer-Verlag, New York, 1993, pp. 284–307.
  • S. Yalamanchili, W.A. Sirignano, R. Seiser, and K. Seshadri, Reduced methanol kinetic mechanisms for combustion applications, Combust. Flame 142 (2005), pp. 258–265.
  • R. Seiser, K. Seshadri, and F.A. Williams, Detailed and reduced chemistry for methanol ignition, Combust. Flame 158 (2011), pp. 1667–1672.
  • A.L. Sánchez, J. Urzay, and A. Liñán, The role of separation of scales in the description of spray combustion, Proc. Combust. Inst. 35 (2015), pp. 1549–1577.
  • P. Boivin, C. Jiménez, A.L. Sánchez, and F.A. Williams, An explicit reduced mechanism for H2–air combustion, Proc. Combust. Inst. 33 (2011), pp. 517–523.
  • P. Boivin, A.L. Sánchez, and F.A. Williams, Four-step and three-step systematically reduced chemistry for wide-range H2–air combustion problems, Combust. Flame 160 (2013), pp. 76–82.
  • R.P. Lindstedt and M. P. Meyer, A dimensionally reduced reaction mechanism for methanol oxidation, Proc. Combust. Inst. 29 (2002), pp. 1395–1402.
  • Chemical-kinetic mechanisms for combustion applications, version 2014-10-04, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. Available at http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
  • T.J. Held and F.L. Dryer, A comprehensive mechanism for methanol oxidation, Int. J. Chem. Kinetics 30 (1998), pp. 805–830.
  • J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, and J.J. Scire, A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion, Int. J. Chem. Kinetics 39 (2007), pp. 109–136.
  • F.N. Egolfopoulos, D.X. Du, and C.K. Law, A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes, Combust. Sci. Technol. 83 (1992), pp. 33–75.
  • GRI-Mech version 3.0, released 7/30/99, CHEMKIN-II format. Available at http://www.me.berkeley.edu/gri_mech/.
  • S.C. Li and F. A. Williams, Experimental and numerical studies of two-stage methanol flames, Proc. Combust. Inst. 26 (1996), pp. 1017–1024.
  • B.L. Zhang and F.A. Williams, Alcohol droplet combustion, Acta Astronautica 39 (1996), pp. 599–603.
  • H.S.T. Driver, R.J. Hutcheon, R.D. Lockett, G.N. Robertson, H.-H. Grotheer, and S. Klem, Elementary reactions in the methanol oxidation system. Part II: Measurement and modeling of autoignition in a methanol-fuelled Otto engine, Berichte der Bunsengesellschaft für Physikalische Chemie 96 (1992), pp. 1376–1387. Available at http://dx.doi.org/10.1002/bbpc.19920961008.
  • Z. Hong, K. Lam, R. Sur, S. Wang, D. Davidson, and R. Hanson, On the rate constants of OH + HO2 and HO2 + HO2: a comprehensive study of H2O2 thermal decomposition using multi-species laser absorption, Proc. Combust. Inst. 34 (2013), pp. 565–571.
  • A.L. Sánchez and F.A. Williams, Recent advances in understanding of flammability characteristics of hydrogen, Prog. Energy Combust. Sci. 41 (2014), pp. 1–55.
  • D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz, Evaluated Kinetic Data for Combustion Modelling, J. Phys. Chem. Ref. Data 21 (1992), pp. 411–734.
  • H. Hashemi, J. M. Christensen, S. Gersen, and P. Glarborg, Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling, Proc. Combust. Inst. 35 (2015), pp. 553–560.
  • I. M. Alecu and D.G. Truhlar, Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 1. Accurate thermochemistry and barrier heights, J. Phys. Chem. A 115 (2011), pp. 2811–2829.
  • I. M. Alecu and D.G. Truhlar, Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants, J. Phys. Chem. A 115 (2011), pp. 14599–14611.
  • K. Kumar and C.-J. Sung, Autoignition of methanol: experiments and computations, Int. J. Chem. Kinetics 43 (2011), pp. 175–184.
  • R. Meana-Pañeda, D.G. Truhlar, and A. Fernández-Ramos, High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen, J. Chem. Phys. 134 (2011), Article ID 094302. Available at http://dx.doi.org/10.1063/1.3555763.
  • V. Aranda, J.M. Christensen, M.U. Alzueta, P. Glarborg, S. Gersen, Y. Gao, and P. Marshall, Experimental and kinetic modeling study of methanol ignition and oxidation at high pressure, Int. J. Chem. Kinetics 45 (2013), pp. 283–294.
  • E. E. Dames and D.M. Golden, Master equation modeling of the unimolecular decompositions of hydroxymethyl (CH2OH) and methoxy (CH3O) radicals to formaldehyde (CH2O) + H, J. Phys. Chem. A 117 (2013), pp. 7686–7696.
  • W.K. Metcalfe, S.M. Burke, S.S. Ahmed, and H.J. Curran, A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels, Int. J. Chem. Kinetics 45 (2013), pp. 638–675.
  • W. Ren, E. Dames, D. Hyland, D.F. Davidson, and R.K. Hanson, Shock tube study of methanol, methyl formate pyrolysis: CH3OH and CO time-history measurements, Combust. Flame 160 (2013), pp. 2669–2679.
  • L.T. Zaczek, K.Y. Lam, D.F. Davidson, and R.K. Hanson, A shock tube study of CH3OH + OH → Products using OH laser absorption, Proc. Combust. Inst. 35 (2015), pp. 377–384.
  • S.M. Sarathy, P. Oßwald, N. Hansen, and K. Kohse-Höinghaus, Alcohol combustion chemistry, Prog. Energy Combust. Sci. 44 (2014), pp. 40–102.
  • B.L. Zhang, J.M. Card, and F.A. Williams, Application of rate-ratio asymptotics to the prediction of extinction for methanol droplet combustion, Combust. Flame 105 (1996), pp. 267–290.
  • J. Card, R. Ryden, and F. A. Williams, Influences of flame–vortex interactions on formation of oxides of nitrogen in curved methane–air diffusion flamelets, Combust. Flame 105 (1996), pp. 373–380.
  • B. Yang, K. Seshadri, and N. Peters, The asymptotic structure of premixed methanol–air flames, Combust. Flame 91 (1992), pp. 382–398.
  • R.G. Gilbert, K. Luther, and J. Troe, Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constant, Berichte der Bunsengesellschaft für Physikalische Chemie 87 (1983), pp. 169–177. Available at http://dx.doi.org/10.1002/bbpc.19830870218.
  • R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, and Ola Adigun, CHEMKIN Collection, Release 3.6, Reaction Design, San Diego, CA, 2000.
  • Cosilab Collection, Rotexo-Softpredict-Cosilab, Bad Zwischenahn, Germany, 2007. Available at http://www.SoftPredict.com.
  • G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems, Proc. Roy. Soc. London A 307 (1968), pp. 111–135.
  • M.D. Smooke and V. Giovangigli, Formulation of the premixed and nonpremixed test problems, in Reduced kinetic mechanisms and asymptotic approximations for methane–air flames, M.D. Smooke, ed., Springer-Verlag, Berlin, 1991, pp. 1–28.
  • K. Saeed and C.R. Stone, Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model, Combust. Flame 139 (2004), pp. 152–166.
  • J. Vancoillie, M. Christensen, E.J.K. Nilsson, S. Verhelst, and A.A. Konnov, Temperature dependence of the laminar burning velocity of methanol flames, Energy & Fuels 26 (2012), pp. 1557–1564.
  • L. Sileghem, V.A. Alekseev, J. Vancoillie, E.J.K. Nilsson, S. Verhelst, and A.A. Konnov, Laminar burning velocities of primary reference fuels and simple alcohols, Fuel 115 (2014), pp. 32–40.
  • J. Beeckmann, L. Cai, and H. Pitsch, Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure, Fuel 117 (2014), pp. 340–350. Available at http://dx.doi.org/10.1016/j.fuel.2013.09.025.
  • W. Wiser and G.R. Hill, A kinetic comparison of the combustion of methyl alcohol and methane, Proc. Combust. Inst. 5 (1955), pp. 553–558.
  • G.J. Gibbs and H.F. Calcote, Effect of molecular structure on burning velocity, J. Chem. Eng. Data 4 (1959), pp. 226–237.
  • O.L. Gulder, Laminar burning velocities of methanol, ethanol and isooctane–air mixtures, Proc. Combust. Inst. 19 (1982), pp. 275–281.
  • M. Metghachi and J.C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combust. Flame 48 (1982), pp. 191–210.
  • S.Y. Liao, D.M. Jiang, Z.H. Huang, W.D. Shen, C. Yuan, and Q. Cheng, Laminar burning velocities for mixtures of methanol and air at elevated temperatures, Energy Conversion & Mgmt 48 (2007), pp. 857–863.
  • Z. Zhang, Z. Huang, X. Wang, J. Xiang, X. Wang, and H. Miao, Measurements of laminar burning velocities and Markstein lengths for methanol–air–nitrogen mixtures at elevated pressures and temperatures, Combust. Flame 155 (2008), pp. 358–368.
  • P.S. Veloo, Y.L. Wang, F.N. Egolfopoulos, and C.K. Westbrook, A comparative experimental and computational study of methanol, ethanol, and n-butanol flames, Combust. Flame 157 (2010), pp. 1989–2004.
  • D. Cooke, M. Dodson, and A. Williams, A shock-tube study of the ignition of methanol and ethanol with oxygen, Combust. Flame 16 (1971), pp. 233–236.
  • C.T. Bowman, A shock-tube investigation of the high-temperature oxidation of methanol, Combust. Flame 25 (1975), pp. 343–354.
  • K. Natajaran and K.A. Bhaskaran, An experimental and analytical study of methanol ignition behind shock waves, Combust. Flame 43 (1981), pp. 35–49.
  • K. Fieweger, R. Blumenthal, and G. Adomeit, Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure, Combust. Flame 109 (1997), pp. 599–619.
  • S.C. Li and F.A. Williams, Formation of NOx, CH4, and C2 species in laminar methanol flames, Proc. Combust. Inst. 27 (1998), pp. 485–493.
  • R. Seiser, S. Humer, K. Seshadri, and E. Pucher, Experimental investigation of methanol and ethanol flames in nonuniform flows, Proc. Combust. Inst. 31 (2007), pp. 1173–1180.
  • U. Niemann, K. Seshadri, and F.A. Williams, Effect of pressure on structure and extinction of near-limit hydrogen counterflow diffusion flames, Proc. Combust. Inst. 34 (2013), pp. 881–886.
  • B.A. Williams, Sensitivity of calculated extinction strain rate to molecular transport formulation in nonpremixed counterflow flames, Combust. Flame 124 (2001), pp. 330–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.