629
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Understanding soot particle size evolution in laminar ethylene/air diffusion flames using novel soot coalescence models

, &
Pages 707-734 | Received 20 Jul 2015, Accepted 08 Mar 2016, Published online: 07 Jun 2016

References

  • EPA, Integrated Science Assessment for Particulate Matter, US Environmental Protection Agency, Washington, DC, 2009.
  • M.M. Glovsky, A.G. Miguel, and G.R. Cass, Particulate Air Pollution: Possible Relevance in Asthma. Allergy Asthma Proc. 18 (1997), pp. 163–166. doi:10.2500/108854197778984392.
  • J.L. Mauderly, Toxicological approaches to complex mixtures. Environ. Health. Perspect. 101 Suppl (1993), pp. 155–165.
  • D.L. Albritton, and D.S. Greenbaum, Atmospheric Observations Helping Build the Scientific Basis for Decisions Related to Airborne Particulate Matter. Health Effects Institute and the Aeronomy Laboratory of the National Oceanic and Atmospheric Administration, Cambridge, MA, 1998.
  • J.S. Lighty, J.M. Veranth, and A.F. Sarofim, Combustion aerosols: factors governing their size and composition and implications to human health. J. Air Waste Manage. Assoc. 50 (2000), pp. :1565–1618. doi:10.1080/10473289.2000.10464197.
  • R. Phalen. Proceedings of the Third Colloquium on Particulate Air Pollution and Human Health: final report. Sacramento, CA: California Environmental Protection Agency, Air Resources Board, Research Division; 1999.
  • A. Veshkini, N.A. Eaves, S.B. Dworkin, and M.J. Thomson, Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames, Combust. Flame 167 (2016), pp. 335–352. doi:10.1016/j.combustflame.2016.02.024.
  • A. Veshkini, N.A. Eaves, S.B. Dworkin, and M.J. Thomson. Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combust. Flame (2016), pp. 335–352. doi:10.1016/j.combustflame.2016.02.024.
  • A.D. Abid, J. Camacho, D.A. Sheen, and H. Wang. Quantitative measurement of soot particle size distribution in premixed flames – The burner-stabilized stagnation flame approach. Combust. Flame 156 (2009), pp. 1862–1870. doi:10.1016/j.combustflame.2009.05.010.
  • A.D. Abid, N. Heinz, E.D. Tolmachoff, D.J. Phares, C.S. Campbell, and H. Wang. On evolution of particle size distribution functions of incipient soot in premixed ethylene–oxygen–argon flames. Combust. Flame 154 (2008), pp. 775–788. doi:10.1016/j.combustflame.2008.06.009.
  • J. Camacho, C. Liu, C. Gu, H. Lin, Z. Huang, Q. Tang, X. You, C. Saggese, Y. Li, H. Jung, L. Deng, I. Wlokas, and H. Wang, Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame, Combust. Flame 162 (2015), pp. 3810–3822. doi:10.1016/j.combustflame.2015.07.018.
  • M. Alfè, B. Apicella, R. Barbella, J.-N. Rouzaud, A. Tregrossi, A. Ciajolo. Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proc. Combust. Inst. 32 (2009), pp. 697–704. doi:10.1016/j.proci.2008.06.193.
  • M. Alfè, B. Apicella, J.-N. Rouzaud, A., and A. Ciajolo. The effect of temperature on soot properties in premixed methane flames. Combust. Flame 157 (2010), 1959–1965. doi:10.1016/j.combustflame.2010.02.007.
  • U. Bonne, K.H. Homann, and H.G. Wagner. Carbon formation in premixed flames. Symp. Combust. 10 (1965), 503–512. doi:10.1016/S0082-0784(65)80197-7.
  • K.H. Homann. Carbon formation in premixed flames. Combust. Flame 11 (1967), 265–287.
  • C. Russo, M. Alfè, J.-N. Rouzaud, F. Stanzione, A. Tregrossi, and A. Ciajolo. Probing structures of soot formed in premixed flames of methane, ethylene and benzene. Proc. Combust. Inst. 34 (2013), pp. 1885–1892. doi:10.1016/j.proci.2012.06.127.
  • C. Russo, F. Stanzione, A. Tregrossi, M. Alfè, and A. Ciajolo. The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames. Combust. Flame 159 (2012), pp. 2233–2242. doi:10.1016/j.combustflame.2012.02.014.
  • F. Xu, K.-C. Lin, G.M. Faeth. Soot formation in laminar premixed methane/oxygen flames at atmospheric pressure. Combust. Flame 115 (1998), 195–209. doi:10.1016/S0010-2180(98)00017-0.
  • C.P. Arana, M. Pontoni, S. Sen, and I.K. Puri. Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames. Combust. Flame 138 (2004), pp. 362–372. doi:10.1016/j.combustflame.2004.04.013.
  • R.A. Dobbins, and C.M. Megaridis. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir. 3 (1987), pp. 254–259. doi:10.1021/la00074a019.
  • A.M. El-Leathy, C.H. Kim, G.M. Faeth, and F. Xu. Soot surface reactions in high-temperature laminar diffusion flames. AIAA J. 42 (2004), pp. 988–996.
  • A.M. El-Leathy, F. Xu, C.H. Kim and G.M. Faeth. Soot surface growth in laminar hydrocarbon/air diffusion flames. AIAA J. 41 (2003), pp. 856–865.
  • S.S. Iyer, T.A. Litzinger, S.-Y. Lee, R.J. Santoro. Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame. Combust. Flame 149 (2007), pp. 206–216. doi:10.1016/j.combustflame.2006.11.009.
  • I.M. Kennedy, C. Yam, D.C. Rapp, and R.J. Santoro. Modeling and measurements of soot and species in a laminar diffusion flame. Combust. Flame 107 (1996), pp. 368–382. doi:10.1016/S0010-2180(96)00092-2.
  • M. Kholghy, M. Saffaripour, C. Yip, and M.J. Thomson. The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1. Combust. Flame 160 (2013), pp. 2119–2130. doi:10.1016/j.combustflame.2013.04.008.
  • C.H. Kim, A.M. El-Leathy, F. Xu, and G.M. Faeth. Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1–1.0 atm. Combust. Flame 136 (2004), pp. 191–207. doi:10.1016/j.combustflame.2003.09.017.
  • Ü.Ö. Köylü, C.S. McEnally, D.E. Rosner, and L.D. Pfefferle. Simultaneous measurements of soot volume fraction and particle size / microstructure in flames using a thermophoretic sampling technique. Combust. Flame 110 (1997), pp. 494–507. doi:10.1016/S0010-2180(97)00089-8.
  • C.S. McEnally, Ü.Ö. Köylü, L.D. Pfefferle, and D.E. Rosner. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples. Combust. Flame 109 (1997), pp. 701–720. doi:10.1016/S0010-2180(97)00054-0.
  • C.M. Megaridis, and R.A. Dobbins. Soot aerosol dynamics in a laminar ethylene diffusion flame. Symp. Combust. 22 (1989), pp. 353–362. doi:10.1016/S0082-0784(89)80041-4.
  • M. Saffaripour, A. Veshkini, M. Kholghy, and M.J. Thomson. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane. Combust. Flame 161 (2014), pp. 848–863. doi:10.1016/j.combustflame.2013.10.016.
  • M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, and R.J. Hall. Soot formation in laminar diffusion flames. Combust. Flame 143 (2005), pp. 613–628. doi:10.1016/j.combustflame.2005.08.028.
  • M.D. Smooke, C.S. McEnally, L.D. Pfefferle, R.J., and M.B. Colket. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combust. Flame 117 (1999), pp. 117–139. doi:10.1016/S0010-2180(98)00096-0.
  • M.D. Smooke, I.K. Puri, and K. Seshadri. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. Symp. Combust. 21 (1988), pp. 1783–1792. doi:10.1016/S0082-0784(88)80412-0.
  • F. Xu, and G.M. Faeth. Soot formation in laminar acetylene/air diffusion flames at atmospheric pressure. Combust. Flame 125 (2001), pp. 804–819. doi:10.1016/S0010-2180(01)00221-8.
  • J.P. Cain, A. Laskin, M. Kholghy, M.J. Thomson, and H. Wang. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame. Phys. Chem. Chem. Phys. 16 (2014), pp. 25862–25875. doi:10.1039/c4cp03330b.
  • A. D'Anna, M. Commodo, S. Violi, C. Allouis, and J. Kent. Nano organic carbon and soot in turbulent non-premixed ethylene flames. Proc. Combust. Inst. 31 (2007), pp. 621–629. doi:10.1016/j.proci.2006.07.062.
  • G.M. Faeth, and Ü.Ö. Köylü. Soot morphology and optical properties in nonpremixed turbulent flame environments. Combust. Sci. Technol. 108 (1995), pp. 207–229. doi:10.1080/00102209508960399.
  • Ü.Ö. Köylü, and G.M. Faeth. Structure of overfire soot in buoyant turbulent diffusion flames at long residence times. Combust. Flame 89 (1992), pp. 140–156. doi:10.1016/0010-2180(92)90024-J.
  • N.H. Qamar, G.J. Nathan, Z.T. Alwahabi, and K.D. King. The effect of global mixing on soot volume fraction: measurements in simple jet, precessing jet, and bluff body flames. Proc. Combust. Inst. 30 (2005), pp. 1493–1500. doi:10.1016/j.proci.2004.08.102.
  • B. Hu, B. Yang, and Ü.Ö. Köylü. Soot measurements at the axis of an ethylene/air non-premixed turbulent jet flame. Combust. Flame 134 (2003), pp. 93–106. doi:10.1016/S0010-2180(03)00085-3.
  • R.A. Dobbins, R.A. Fletcher, and H.-C. Chang. The evolution of soot precursor particles in a diffusion flame. Combust. Flame 115 (1998), pp. 285–298. doi:10.1016/S0010-2180(98)00010-8.
  • B. Öktem, M.P. Tolocka, B. Zhao, H. Wang, and M.V. Johnston. Chemical species associated with the early stage of soot growth in a laminar premixed ethylene–oxygen–argon flame. Combust. Flame 142 (2005), pp. 364–373. doi:10.1016/j.combustflame.2005.03.016.
  • B. Hu, Ü.Ö. Köylü. Size and morphology of soot particulates sampled from a turbulent nonpremixed acetylene flame. Aerosol Sci. Technol. 38 (2004), pp. 1009–1018. doi:10.1080/027868290519111.
  • B. Zhao, K. Uchikawa, and H. Wang. A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy. Proc. Combust. Inst. 31 (2007), pp. 851–860. doi:10.1016/j.proci.2006.08.064.
  • M.M. Maricq. A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames. Combust. Flame 144 (2006), pp. 730–743. doi:10.1016/j.combustflame.2005.09.007.
  • S.K. Friedlander. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd ed. New York: Oxford University Press; 2000.
  • R.A. Dobbins, R.A. Fletcher, and W. Lu. Laser microprobe analysis of soot precursor particles and carbonaceous soot. Combust. Flame 100 (1995), pp. 301–309. doi:10.1016/0010-2180(94)00047-V.
  • S.B. Dworkin, Q. Zhang, M.J. Thomson, N.A. Slavinskaya, and U. Riedel. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust. Flame 158 (2011), pp. 1682–1695. doi:10.1016/j.combustflame.2011.01.013.
  • A. Kazakov, and M. Frenklach. Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and application to high-pressure laminar premixed flames. Combust. Flame 114 (1998), pp. 484–501. doi:10.1016/S0010-2180(97)00322-2.
  • M.E. Mueller, G. Blanquart, and H. Pitsch. A joint volume-surface model of soot aggregation with the method of moments. Proc. Combust. Inst. 32 (2009), pp. 785–792. doi:10.1016/j.proci.2008.06.207.
  • M.E. Mueller, G. Blanquart, and H. Pitsch. Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156 (2009), pp. 1143–1155. doi:10.1016/j.combustflame.2009.01.025.
  • S.H. Park, S.N. Rogak, W.K. Bushe, J.Z. Wen, and M.J. Thomson. An aerosol model to predict size and structure of soot particles. Combust. Theory Model. 9 (2005), pp. 499–513. doi:10.1080/13647830500195005.
  • M. Sander, R.I.A. Patterson, A. Braumann, A. Raj, and M. Kraft. Developing the PAH-PP soot particle model using process informatics and uncertainty propagation. Proc. Combust. Inst. 33 (2011), pp. 675–683. doi:10.1016/j.proci.2010.06.156.
  • G.D. Ulrich, and N.S. Subramanian III. Coalescence as a rate-controlling process. Combust. Sci. Technol. 17 (1977), pp. 119–126. doi:10.1080/00102207708946822.
  • M. Sander, R.H. West, M.S. Celnik, and M. Kraft. A detailed model for the sintering of polydispersed nanoparticle agglomerates. Aerosol. Sci. Technol. 43 (2009), pp. 978–989. doi:10.1080/02786820903092416.
  • A. D'Anna, M. Sirignano, and J. Kent. A model of particle nucleation in premixed ethylene flames. Combust. Flame 157 (2010), pp. 2106–2115. doi:10.1016/j.combustflame.2010.04.019.
  • R.J. Santoro, H.G. Semerjian, and R.A. Dobbins. Soot particle measurements in diffusion flames. Combust. Flame 51 (1983), pp. 203–218. doi:10.1016/0010-2180(83)90099-8.
  • L.R. Boedeker, and G.M. Dobbs. Soot distribution and cars temperature measuremnts in axisymmetric laminar diffusion flames with several fuels. Symp. Combust. 21 (1988), pp. 1097–1105. doi:10.1016/S0082-0784(88)80340-0.
  • K.C. Smyth, Diffusion Flame Measurements of Species Concentrations, Soot Concentrations, Temperature, and Velocity. Build. Fire Res. Lab. Natl. Inst. Stand. Technol. (1999). Available at http://www.nist.gov/el/fire_research/flamereduc/diffusion_flamedata.cfm.
  • 2014 International Sooting Flame (ISF) Workshop, August 2–3, Pleasanton Hilton, Pleasanton, California, 2014. Available at http://www.adelaide.edu.au/cet/isfworkshop/.
  • R.J. Santoro, T.T. Yeh, J.J. Horvath, and H.G. Semerjian. The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol. 53 (1987), pp. 89–115. doi:10.1080/00102208708947022.
  • C.M. Megaridis, and R.A. Dobbins. Comparison of soot growth and oxidation in smoking and non–smoking ethylene diffusion flames. Combust. Sci. Technol. 66 (1989), pp. 1–16. doi:10.1080/00102208908947136.
  • R. Puri, T.F. Richardson, R.J. Santoro, and R.A. Dobbins. Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust. Flame 92 (1993), pp. 320–333. doi:10.1016/0010-2180(93)90043-3.
  • A.G. Yazicioglu, C.M. Megaridis, A. Campbell, K.-O. Lee, and M.Y. Choi. Measurement of fractal properties of soot agglomerates in laminar coflow diffusion flames using thermophoretic sampling in conjunction with transmission electron microscopy and image processing. Combust. Sci. Technol. 171 (2001), pp. 71–87. doi:10.1080/00102200108907859.
  • Q. Zhang, H. Guo, F. Liu, G.J. Smallwood, and M.J. Thomson. Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model. Proc. Combust. Inst. 32 (2009), pp. 761–768. doi:10.1016/j.proci.2008.06.109.
  • Q. Zhang, M.J. Thomson, H. Guo, F. Liu, and G.J. Smallwood. Modeling of oxidation-driven soot aggregate fragmentation in a laminar coflow diffusion flame. Combust. Sci. Technol. 182 (2010), pp. 491–504. doi:10.1080/00102200903463050.
  • N.A. Slavinskaya, U. Riedel, S.B. Dworkin, and M.J. Thomson. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combust. Flame 159 (2012), pp. 979–995. doi:10.1016/j.combustflame.2011.10.005.
  • Q. Zhang, H. Guo, F. Liu, G.J. Smallwood, and M.J. Thomson. Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame. Combust. Theory Model. 12 (2008), pp. 621–641. doi:10.1080/13647830801966153.
  • N.A. Eaves, S.B. Dworkin, and M.J. Thomson. The importance of reversibility in modeling soot nucleation and condensation processes. Proc. Combust. Inst. 35 (2015), pp. 1787–1794. doi:10.1016/j.proci.2014.05.036.
  • J. Appel, H. Bockhorn, and M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame 121 (2000), pp. 122–136. doi:10.1016/S0010-2180(99)00135-2.
  • Q. Zhang, M.J. Thomson, H. Guo, F. Liu, and G.J. Smallwood. A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combust. Flame 156 (2009), pp. 697–705. doi:10.1016/j.combustflame.2008.10.022.
  • W. Koch, and S.K. Friedlander. The effect of particle coalescence on the surface area of a coagulating aerosol. J. Aerosol. Sci. 20 (1989), pp. 891–894. doi:10.1016/0021-8502(89)90719-2.
  • S.H. Park, and S.N. Rogak. A one-dimensional model for coagulation, sintering, and surface growth of aerosol agglomerates. Aerosol. Sci. Technol. 37 (2003), pp. 947–960. doi:10.1080/02786820300899.
  • J. Frenkel. Viscous flow of crystalline bodies under the action of surface tension. J. Phys. 9 (1945), p. 385.
  • R. Dobrushin, R. Kotecký, and S. Shlosman. Wulff Construction: A Global Shape From Local Interaction. Providence, Rhode Island: American Mathematical Society; 1992.
  • S.K. Friedlander, and M. Wu. Linear rate law for the decay of the excess surface area of a coalescing solid particle. Phys. Rev. B. 49 (1994), pp. 3622–3624. doi:10.1103/PhysRevB.49.3622.
  • M.R. Zachariah, and M.J. Carrier. Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models. J. Aerosol. Sci. 30 (1999), pp. 1139–1151. doi:10.1016/S0021-8502(98)00782-4.
  • A.C. Barone, A. D'Alessio, and A. D'Anna. Morphological characterization of the early process of soot formation by atomic force microscopy. Combust. Flame 132 (2003), pp. 181–187. doi:10.1016/S0010-2180(02)00434-0.
  • P.T. Reilly., R. Gieray, W. Whitten, and J. Ramsey. Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry. Combust. Flame 122 (2000), pp. 90–104. doi:10.1016/S0010-2180(00)00105-X.
  • R.L. Vander Wal. Soot precursor carbonization: visualization using LIF and LII and comparison using bright and dark field TEM. Combust. Flame 112 (1998), pp. 607–616. doi:10.1016/S0010-2180(97)00171-5.
  • C.P. Fenimore, and G.W. Jones. Coagulation of soot to smoke in hydrocarbon flames. Combust. Flame 13 (1969), pp. 303–310.
  • J.B. Howard, B.L. Wersborg, and G.C. Williams. Coagulation of carbon particles in premixed flames. Faraday Symp. Chem. Soc. 7 (1973), p. 109. doi:10.1039/fs9730700109.
  • I.T. Woods, and B.S. Haynes. Soot surface growth at active sites. Combust. Flame 85 (1991), pp. 523–525. doi:10.1016/0010-2180(91)90156-6.
  • M. Frenklach, and H. Wang. Detailed modeling of soot particle nucleation and growth. Symp. Combust. 23 (1991), pp. 1559–1566. doi:10.1016/S0082-0784(06)80426-1.
  • N.A. Eaves, A. Veshkini, C. Riese, Q. Zhang, S.B. Dworkin, and M.J. Thomson. A numerical study of high pressure, laminar, sooting, ethane–air coflow diffusion flames. Combust. Flame 159 (2012), pp. 3179–3190. doi:10.1016/j.combustflame.2012.03.017.
  • F. Xu. Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure. Combust. Flame 132 (2003), pp. 43–57. doi:10.1016/S0010-2180(02)00459-5.
  • H. Sabbah, L. Biennier, S.J. Klippenstein, I.R. Sims, and B.R. Rowe. Exploring the role of PAHs in the formation of soot: Pyrene dimerization. J. Phys. Chem. Lett. 1 (2010), pp. 2962–2967. doi:10.1021/jz101033t.
  • H. Wang. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33 (2011), pp. 41–67. doi:10.1016/j.proci.2010.09.009.
  • J. Lahaye. Particulate carbon from the gas phase. Carbon NY. 30 (1992), pp. 309–314.
  • R.A. Dobbins, G.J. Govatzidakis, W. Lu, A.F. Schwartzman, and R.A. Fletcher. Carbonization rate of soot precursor particles. Combust. Sci. Technol. 121 (1996), pp. 103–121. doi:10.1080/00102209608935589.
  • I.C. Lewis. 6. Chemistry of carbonization. Carbon NY. 20 (1982), p. 125. doi:10.1016/0008-6223(82)90425-0.
  • R.A. Dobbins. Soot inception temperature and the carbonization rate of precursor particles. Combust. Flame 130 (2002), pp. 204–214. doi:10.1016/S0010-2180(02)00374-7.
  • A. Khosousi, and S.B. Dworkin. Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames. Proc. Combust. Inst. 35 (2015), pp. 1903–1910. doi:10.1016/j.proci.2014.05.152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.