376
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

A direct approach to generalised multiple mapping conditioning for selected turbulent diffusion flame cases

, , &
Pages 735-764 | Received 25 Sep 2015, Accepted 11 Mar 2016, Published online: 07 Jun 2016

References

  • V.R. Kuznetsov and V. Sabel'nikov, Turbulence and Combustion, 1st ed., P.A. Libby, English edition editor, Hemisphere, New York, 1990.
  • P. Libby and F. Williams, Turbulent Combustion: Fundamental Aspects and a Review, Academic Press, London, 1994.
  • R. Bilger, Turbulent flows with nonpremixed reactants, chapter 3 in Turbulent Reacting Flows, P. Libby and F. Williams, eds., Springer, 1980, pp. 65–113.
  • A. Klimenko and R. Bilger, Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25 (1999), pp. 595–687.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • S. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • D. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2010), pp. 168–259. Available at http://dx.doi.org/10.1016/j.pecs.2009.09.003.
  • P.J. Colucci, F.A. Jaberi, P. Givi, and S.B. Pope, Filtered density function for large eddy simulation of turbulent reacting flows, Phys. Fluids 10 (1998), pp. 499–515. Available at http://dx.doi.org/10.1063/1.869537.
  • R. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK, 2003.
  • S. Heinz, Statistical Mechanics of Turbulent Flows, Springer-Verlag, Berlin, 2003.
  • V. Raman and H. Pitsch, A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry, Proc. Combust. Inst. 31 (2007), pp. 1711–1719.
  • M.J. Cleary, A.Y. Klimenko, J. Janicka, and M. Pfitzner, A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames, in Proc. Combust. Inst., 32 (2009), pp. 1499–1507.
  • S. Navarro-Martinez and A. Kronenburg, LES-CMC simulations of a lifted methane flame, Proc. Combust. Inst. 32 (2009), pp. 1509–1516. Available at http://dx.doi.org/10.1016/j.proci.2008.06.178.
  • W. Jones and V. Prasad, Large eddy simulation of the Sandia flame series (D–F) using the Eulerian stochastic field method, Combust. Flame 157 (2010), pp. 1621–1636.
  • T. Echekki and E. Mastorakos (eds.), Turbulent Combustion Modelling. Advances, New Trends and Perspectives, Vol. 95 of Fluid Mechanics and Its Applications, Springer Netherlands, Dordrecht, 2011. Available at http://dx.doi.org/10.1007/978-94-007-0412-1.
  • J. Villermaux and J. Devillon, Representation de la coalescence et de la redispersion des domaines de segregation dans un fluide par un modele d'interaction phenomenologique, in Proceedings of the Second International Symposium on Chemical Reaction Engineering, 2–4 May 1972, Amsterdam, Elsevier, New York, 1972, pp. 1–13.
  • C. Dopazo and E. O’Brien, An approach to the autoignition of a turbulent mixture, Acta Astronautica 1 (1974), pp. 1239–1266.
  • R. Curl, Dispersed phase mixing: I. Theory and effects in simple reactors, AIChE J. 9 (1963), pp. 175–181.
  • J. Janicka, W. Kolbe, and W. Kollmann, Closure of the transport equation for the probability density function of turbulent scalar fields, J. Non-Equilib. Thermodyn. 4 (1977), pp. 47–66.
  • R. Lindstedt, S. Louloudi, and E. Váos, Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry, Proc. Combust. Inst. 28 (2000), pp. 149–156.
  • S. Subramaniam and S. Pope, A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees, Combust. Flame 115 (1998), pp. 487–514.
  • A. Klimenko and S. Pope, The modeling of turbulent reactive flows based on multiple mapping conditioning, Phys. Fluids 15 (2003), pp. 1907–1925. Available at http://dx.doi.org/10.1063/1.1575754.
  • A. Klimenko, Matching conditional moments in PDF modelling of nonpremixed combustion, Combust. Flame 143 (2005), pp. 369–385.
  • M. Cleary and A. Klimenko, Multiple mapping conditioning: a new modelling framework for turbulent combustion, Chapter 7 in Turbulent Combustion Modelling. Advances, New Trends and Perspectives, T. Echekki and E. Mastorakos, eds., Vol. 95 of Fluid Mechanics and Its Applications, Springer Netherlands, Dordrecht, 2011, pp. 143–173. Available at http://dx.doi.org/10.1007/978-94-007-0412-1.
  • A.P. Wandel and A.Y. Klimenko, Testing multiple mapping conditioning mixing for Monte Carlo probability density function simulations, Phys. Fluids 17 (2005), Article ID 128105. Available at http://dx.doi.org/10.1063/1.2147609.
  • M. Cleary and A. Kronenburg, Multiple mapping conditioning for extinction and reignition in turbulent diffusion flames, Proc. Combust. Inst. 31 (2007), pp. 1497–1505.
  • K. Vogiatzaki, M. Cleary, A. Kronenburg, and J. Kent, Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning, Phys. Fluids 21 (2009), Article ID 025105. Available at http://dx.doi.org/10.1063/1.3081553.
  • K. Vogiatzaki, A. Kronenburg, S. Navarro-Martinez, and W. Jones, Stochastic multiple mapping conditioning for a piloted, turbulent jet diffusion flame, Proc. Combust. Inst. 33 (2011), pp. 1523–1531. Available at http://dx.doi.org/10.1016/j.proci.2010.06.126.
  • P. Vaishnavi and A. Kronenburg, Multiple mapping conditioning of velocity in turbulent jet flames, Combust. Flame 157 (2010), pp. 1863–1865.
  • C.B. Devaud, I. Stankovic, and B. Merci, Deterministic multiple mapping conditioning (MMC) applied to a turbulent flame in Large Eddy Simulation (LES), Proc. Combust. Inst. 34 (2013), pp. 1213–1221.
  • S. Pope, A model for turbulent mixing based on shadow-position conditioning, Phys. Fluids 25 (2013), Article ID 110803. Available at http://dx.doi.org/10.1063/1.4818981.
  • A.P. Wandel and R.P. Lindstedt, Hybrid multiple mapping conditioning modeling of local extinction, Proc. Combust. Inst. 34 (2013), pp. 1365–1372.
  • B. Sundaram, A.Y. Klimenko, M.J. Cleary, and U. Maas, Prediction of NOx in premixed high-pressure lean methane flames with an MMC-partially stirred reactor, Proc. Combust. Inst. 35 (2015), pp. 1517–1525.
  • M.J. Cleary and A.Y. Klimenko, A generalised multiple mapping conditioning approach for turbulent combustion, Flow Turbul. Combust. 82 (2009), pp. 477–491.
  • A.Y. Klimenko, Lagrangian particles with mixing. II. Sparse-Lagrangian methods in application for turbulent reacting flows, Phys. Fluids 21 (2009), Article ID 065102. Available at http://dx.doi.org/10.1063/1.3147927.
  • Y. Ge, M. Cleary, and A. Klimenko, A comparative study of Sandia flame series (D–F) using sparse-Lagrangian MMC modelling, Proc. Combust. Inst. 34 (2013), pp. 1325–1332. Available at http://dx.doi.org/10.1016/j.proci.2012.06.059.
  • A. Norris and S. Pope, Turbulent mixing model based on ordered pairing, Combust. Flame 83 (1991), pp. 27–42.
  • R. Barlow and J. Frank, Effects of turbulence on species mass fractions in methane/air jet flames, Symp. (Int.) Combust. 27 (1998), pp. 1087–1095.
  • R. Cabra, T. Myhrvold, J. Chen, R. Dibble, A. Karpetis, and R. Barlow, Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent h2/n2 jet flame in a vitiated coflow, Proc. Combust. Inst. 29 (2002), pp. 1881–1888.
  • L. Dialameh, M. Cleary, and A. Klimenko, A multiple mapping conditioning model for differential diffusion, Phys. Fluids 26 (2014), Article ID 025107. Available at http://dx.doi.org/10.1063/1.4864101.
  • A.Y. Klimenko, MMC modelling and fluctuations of the scalar dissipation, in 2003 Australian Symposium on Combustion & The 8th Australian Flame Days, 8–9 December 2003, Monash University, Melbourne, Victoria, Australia.
  • A. Klimenko, Matching the conditional variance as a criterion for selecting parameters in the simplest multiple mapping conditioning models, Combust. Flame 16 (2004), pp. 4754–4757.
  • R.O. Fox, On velocity-conditioned scalar mixing in homogeneous turbulence, Phys. Fluids 8 (1996), Article ID 2678, pp. 2678–2691. Available at http://dx.doi.org/10.1063/1.869054.
  • Y. Ge, M. Cleary, and A. Klimenko, Sparse-Lagrangian FDF simulations of Sandia flame E with density coupling, Proc. Combust. Inst. 33 (2011), 1401–1409.
  • A.Y. Klimenko, On simulating scalar transport by mixing between Lagrangian particles, Phys. Fluids 19 (2007), Article ID 031702. Available at http://dx.doi.org/10.1063/1.2711233.
  • A.Y. Klimenko and M.J. Cleary, Convergence to a model in sparse-Lagrangian FDF simulations, Flow Turbul. Combust. 85 (2010), p. 567–591.
  • A.Y. Klimenko, Lagrangian particles with mixing. I. Simulating scalar transport, Phys. Fluids 21 (2009), Article ID 065101. Available at http://dx.doi.org/10.1063/1.3147925.
  • K. Vogiatzaki, S. Navarro-Martinez, S. De, and A. Kronenburg, Mixing modelling framework based on multiple mapping conditioning for the prediction of turbulent flame extinction, Flow Turbul. Combust. 95 (2015), pp. 501–517. Available at http://dx.doi.org/10.1007/s10494-015-9626-0.
  • M. Cleary and A. Klimenko, A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows, Phys. Fluids 23 (2011), Article ID 115102. Available at http://dx.doi.org/10.1063/1.3657085.
  • A.Y. Klimenko, On the relation between the conditional moment closure and unsteady flamelets, Combust. Theory Model. 5 (2001), pp. 275–294.
  • A. Kempf, F. Flemming, and J. Janicka, Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES, Proc. Combust. Inst. 30 (2005), pp. 557–565. Available at http://dx.doi.org/10.1016/j.proci.2004.08.182.
  • Y. Ge, Generalised multiple mapping conditioning for turbulent combustion simulation, Ph.D. thesis, University of Queensland, 2012.
  • G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W.C. Gardiner Jr, V. Lissianski, and Z. Qin, Gri-Mech 3.0. Available at http://www.me.berkeley.edu/gri_mech/.
  • R. Gordon, S. Starner, A. Masri, and R. Bilger, Further characterisation of lifted hydrogen and methane flames issuing into a vitiated coflow, in Proceedings of the 5th Asia-Pacific Conference on Combustion (ASPACC 2005), 17–20 July 2005, University of Adelaide, South Australia.
  • Z. Wu, S. Starner, and R. Bilger, Lift-off heights of turbulent H2/N2 jet flames in a vitiated co-flow, in Proceedings of the 2003 Australian Symposium on Combustion & The 8th Australian Flame Days, 8–9 December 2003, Monash University, Melbourne, Victoria, Australia.
  • R.R. Cao, S.B. Pope, and A.R. Masri, Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations, Combust. Flame 142 (2005), pp. 438–453.
  • M.A. Mueller, T.J. Kim, R.A. Yetter, and F.L. Dryer, Flow reactor studies and kinetic modeling of the H2/O2 reaction, Int. J. Chem. Kinetics 31 (1999), pp. 113–125.
  • S. Navarro-Martinez and A. Kronenburg, Flame stabilization mechanisms in lifted flames, Flow Turbul. Combust. 87 (2011), pp. 377–406.
  • R.A. Yetter, F.L. Dryer, and H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics, Combust. Sci. Technol. 79 (1991), pp. 97–128.
  • J. Li, Z. Zhao, A. Kazakov, and F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion, Int. J. Chem. Kinetics 36 (2004), pp. 566–575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.