209
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

&
Pages 2-22 | Received 31 Jan 2016, Accepted 02 Jul 2016, Published online: 19 Sep 2016

References

  • N. Laurendeau, Heterogeneous kinetics of coal char gasification and combustion, Prog. Energy Combust. Sci. 4 (1978), pp. 221–270.
  • R.H. Essenhigh, Fundamentals of coal combustion, in Chemistry of Coal Utilization, Second Supplementary Volume, M. Elliot, ed., Wiley, New York, 1981, pp. 1153–1312.
  • C.S. McEnally, L.D. Pfefferle, B. Atakan, and K. Kohse-Hoinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap, Prog. Energy Combust. Sci. 32 (2006), pp. 247–294.
  • H. Wang, Formation of nascent soot and other condensed-phase materials in flames, Proc. Combust. Inst. 33 (2011), pp. 41–67.
  • A.E. Karatas and O.L. Gulder, Soot formation in high pressure laminar diffusion flames, Prog. Energy Combust. Sci. 38 (2012), pp. 818–845.
  • D.E. Edwards, D.Y. Zubarev, J. William A. Lester, and M. Frenklach, Pathways to soot oxidation: Reaction of OH with phenanthrene radicals, J. Phys. Chem. A 118 (2014), pp. 8606–8613.
  • J.A. Keenan and G.V. Candler, Simulation of graphite sublimation and oxidation under re-entry conditions, in AIAA Aerospace Sciences Meeting, 6th Joint Thermophysics and Heat Transfer Conference, Colorado Springs, CO, 1994. Paper No. AIAA 1994-2083. Available at http://dx.doi.org/10.2514/6.1994-2083.
  • G.V. Candler, Nonequilibrium processes in hypervelocity flows: An analysis of carbon ablation models, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 9–12 January 2012, Nashville, TN. Paper No. AIAA 2012-0724. Available at http://dx.doi.org/10.2514/6.2012-724.
  • F.E. Fendell, Burning of spheres gasified by chemical attack, Combust. Sci. Technol. 1 (1969), pp. 13–24.
  • H. Caram and N. Amundson, Discussion and reaction in a stagnant boundary layer about a carbon particle, Ind. Eng. Chem. Fund. 16 (1977), pp. 171–181.
  • P. Libby and T. Blake, Theoretical study of burning carbon particles, Combust. Flame 36 (1979), pp. 139–169.
  • M. Matalon, Complete burning and extinction of a carbon particle in an oxidizing atmosphere, Combust. Sci. Technol. 24 (1980), pp. 115–127.
  • E.T. Turkdogan, V. Koump, J.V. Vinters, and T.F. Perzak, Rate of oxidation of graphite in carbon dioxide, Carbon 6 (1968), pp. 467–484.
  • D. Rosner, High-temperature gas–solid reactions, Ann. Rev. Mat. Sci. 2 (1972), pp. 573–606.
  • D. Bradley and G. Dixon-Lewis, The oxidation of graphite powder in flame reaction zones, Symp. (Int.) Combust. 20 (1985), pp. 931–940.
  • A. Makino, I. Kato, M. Senba, H. Fujizaki, and N. Araki, Flame structure and combustion rate of burning graphite in the stagnation flow, Proc. Combust. Inst. 26 (1996), pp. 3067–3074.
  • H.K. Chelliah, A. Makino, C.K. Law, I. Kato, and N. Araki, Modeling of graphite oxidation in a stagnation-point flow field using detailed homogeneous and semiglobal heterogeneous mechanisms with comparisons to experiments, Combust. Flame 104 (1996), pp. 469–480.
  • R.E. Mitchell, R.J. Kee, P. Glarborg, and M.E. Coltrin, The effect of CO conversion in the boundary layers surrounding pulverized-coal char particles, Symp. (Int.) Combust. 23 (1991), pp. 1169–1176.
  • H.K. Chelliah, Numerical modelling of graphite combustion using elementary, reduced and semi-global heterogeneous reaction mechanisms, in Modeling in Combustion Science, J. Buckmaster and T. Takeno, eds., Lecture Notes in Physics, Springer-Verlag, Berlin, 1995, pp. 130–147.
  • R.I. Acosta, K.C. Gross, and G.P. Perram, Mid-infrared imaging Fourier transform spectrometry for high power fiber laser irradiated fiberglass composites, Proc. SPIE 8239 (2012).
  • S.Y. Cho, R.A. Yetter, and F.L. Dryer, J. Comput. Phys. 102 (1992), pp. 160–179.
  • D. Reinelt, A. Laurs, and G. Adomeit, Ignition and combustion of a packed bed in a stagnation point flow. Part II: Heterogeneous and homogeneous reactions, Combust. Flame 113 (1998), pp. 373–379.
  • J.L. Kassebaum and H.K. Chelliah, Oxidation of isolated porous carbon particles: Comprehensive numerical model, Combust. Theory Model. 13 (2009), pp. 143–166.
  • P. Thakre and V. Yang, Chemical erosion of carbon–carbon/graphite nozzles in solid-propellant rocket motors, J. Propul. & Power 24 (2008), pp. 822–833.
  • P. Thakre and V. Yang, Mitigation of graphite nozzle erosion by boundary-layer control in solid propellant rocket motors, J. Propul. & Power 25 (2009), pp. 1079–1085.
  • D. Bianchi, F. Nasuti, and E. Martelli, Coupled analysis of flow and surface ablation in carbon–carbon rocket nozzles, J. Spacecraft Rockets 46 (2009), pp. 492–500.
  • D. Bianchi, F. Nasuti, M. Onofri, and E. Martelli, Thermochemical erosion analysis for graphite/carbon–carbon rocket nozzles, J. Propul. Power 27 (2011), pp. 197–205. Available at http://dx.doi.org/10.2514/1.47754.
  • H. Weng and A. Martin, Multidimensional modeling of pyrolysis gas transport inside charring ablative materials, J. Thermophys. Heat Trans. 28 (2014), pp. 583–597.
  • H. Jasak, A. Jemcov, and Z. Tukovic, Openfoam: A C++ library for complex physics simulations, in International Workshop on Coupled Methods in Numerical Dynamics, IUC, 2007.
  • R.F. Johnson, A.C. VanDine, G. Esposito, and H.K. Chelliah, On the axisymmetric counterflow flame simulations: Is there an optimal nozzle diameter and separation distance to apply quasi one-dimensional theory? Combust. Sci. Technol. 187 (2015), pp. 37–59.
  • H. Wang, E. Dames, B. Sirjean, D. Sheen, R. Tangko, A. Violi, J. Lai, F. Egolfopoulos, D. Davidson, R. Hanson, C. Bowman, C. Law, W. Tsang, N. Cernansky, D. Miller, and R. Lindstedt, A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurf version 2.0, 2010; software available at http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/Mech_JetSurF2.0.txt.
  • R.J. Kee, J.A. Miller, and T.H. Jefferson, Chemkin II: A general purpose, problem-independent, transportable, Fortran chemical kinetics code package (SAND 89), 1980.
  • R.J. Kee, J.A. Miller, and J. Warnatz, A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties (SAND 86), 1986.
  • R.I. Issa, The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, J. Comput. Phys. 62 (1986), pp. 66–82.
  • A.G. Tomboulides, J.C.Y. Lee, and S.A. Orszag, Numerical simulation of low Mach number reactive flows, J. Sci. Comput. 12 (1997), pp. 139–167. Available at http://dx.doi.org/10.1023/A:1025669715376.
  • M. Oevermann, S. Gerber, and F. Behrendt, Euler–Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor, Particuology 7 (2009), pp. 307–316.
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, A computational tool for the detailed kinetic modeling of laminar flames: Application to C2H4/CH4 coflow flames, Combust. Flame 160 (2013), pp. 870–886.
  • F.A. Williams, Combustion Theory, 2nd ed., Westview Press, New York, NY (1994).
  • R. Puri, R.J. Santoro, and K.C. Smyth, The oxidation of soot and carbon monoxide in hydrocarbon diffusion flames, Combust. Flame 97 (1994), pp. 125–144.
  • H. Guo, P.M. Anderson, and P.B. Sunderland, Optimized rate expressions for soot oxidation by OH and O2, Fuel (2016), pp. 248–252.
  • J. Nagle and F. Strickland-Constable, Oxidation of carbon between 1000–2000 ○C, in Proceedings of the Fifth Conference on Carbon, Vol. 1, 1962, Pergamon Press, London, UK, pp. 154–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.