413
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

The effect of reaction mechanisms on the formation of soot precursors in flames

&
Pages 23-34 | Received 05 Feb 2016, Accepted 02 Jul 2016, Published online: 16 Aug 2016

References

  • S.K. Friedlander, Emerging issues in nanoparticle aerosol science and technology experimental methods and instrumentation, J. Nanoparticle Res. 6 (2004), pp. 313–320.
  • A. Kay and M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy Mat. Solar Cells 44 (1996), pp. 99–117.
  • H.K. Kammler, L. Mädler, and S.E. Pratsinis, Flame synthesis of nanoparticles, Chem. Eng. Technol. 24 (2001), pp. 583–596.
  • IARC, Polynuclear aromatic compounds, part 4, bitumens, coal-tars and derived products, shale-oils and soots, IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 35 (1985), pp. 1–247.
  • K.A. Russ, P. Elvati, T.L. Parsonage, A. Dews, J.A. Jarvis, M. Ray, B. Schneider, P.J.S. Smith, P.T.F. Williamson, A. Violi, and M.A. Philbert, C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages, Nanoscale 8 (2016), pp. 4134–4144.
  • A. Violi, Effects of combustion-generated nanoparticles on cellular membranes, Combust. Sci. Technol. 188 (2016), pp. 769–775.
  • A. Nel, T. Xia, L. Madler, and N. Li, Toxic potential of materials at the nanolevel, Sci. Rev. 311 (2006), pp. 622–627.
  • A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nature Mater. 8 (2009), pp. 543–557.
  • B. Fubini, M. Ghiazza, and I. Fenoglio, Chemical features of engineered nanoparticles relevant to their toxicity, Nanotoxicology, 4 (2010), pp. 347–363.
  • R. Chang and A. Violi, Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study, J. Phys. Chem. B 110 (2006), pp. 5073–5083.
  • S.L. Fiedler and A. Violi, Simulation of nanoparticle permeation through a lipid membrane, Biophys. J. 99 (2010), pp. 144–152.
  • S. Choe, R. Chang, J. Jeon, and A. Violi, Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle, Biophys. J. 95 (2008), pp. 4102–4114.
  • P. Elvati and A. Violi, Free energy calculation of permeant-membrane interactions using molecular dynamics simulations, in Nanotoxicity, J. Reineke, ed., Humana Press, Totowa, NJ, 2012, pp. 189–202.
  • J. Lai, Stochastic simulation of carbonaceous nanoparticle precursor formation in combustion, diss., University of Michigan, 2014.
  • J.S. Lowe, J.Y.W. Lai, P. Elvati, and A. Violi, Towards a predictive model for polycyclic aromatic hydrocarbon dimerization propensity, Proceedings of the Combustion Institute, 35 (2015), pp. 1827–1832.
  • J.Y.W. Lai, P. Elvati, and A. Violi, Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion, Phys. Chem. Chem. Phys. 16 (2014), pp. 7969–7979.
  • A. Tregrossi, A. Ciajolo, and R. Barbella, The combustion of benzene in rich premixed flames at atmospheric pressure, Combust. Flame 117 (1999), pp. 553–561.
  • S.A. Skeen, H.A. Michelsen, K.R. Wilson, D.M. Popolan, A. Violi, and N. Hansen, Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors, J. Aerosol Sci. 58 (2013), pp. 86–102.
  • S.A. Skeen, B. Yang, H.A. Michelsen, J.A. Miller, A. Violi, and N. Hansen, Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry, Proceedings of the Combustion Institute 34 (2013), pp. 1067–1075.
  • M. Frenklach and H. Wang, Detailed modeling of soot particle nucleation and growth, Proceedings of the Combustion Institute 23 (1990), pp. 1559–1566.
  • A. Violi and A. Venkatnathan, Combustion-generated nanoparticles produced in a benzene flame: a multiscale approach, J. Chem. Phys 125 (2006), p. 054302.
  • R. Kee, CHEMKIN, Reaction Design, San Diego, CA, 2006.
  • J. Appel, H. Bockhorn, and M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame 121 (2000), pp. 122–136.
  • A.F. Voter, Introduction to the kinetic Monte Carlo method, Radiat. Eff. Solids 235 (2007), pp. 1–23.
  • A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo king spin systems, J. Comp. Phys. 18 (1975), pp. 10–18.
  • D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 434 (1976), pp. 403–434.
  • D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (1977), pp. 2340–2361.
  • R.A. Dobbins, R.A. Fletcher, and W. Lu, Laser microprobe analysis of soot precursor particles and carbonaceous soot, Combust. Flame 100 (1995), pp. 301–309.
  • R.A. Dobbins, R.A. Fletcher, and H.C. Chang, The evolution of soot precursor particles in a diffusion flame, Combust. Flame 115 (1998), pp. 285–298.
  • P. Weilmunster, A. Keller, and K. Homann, Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames. Part I. Positive ions of polycyclic aromatic hydrocarbons (PAH) in low-pressure premixed flames of acetylene and oxygen, Combust. Flame 116 (1999), pp. 62–83.
  • A. Keller, R. Kovacs, and K. Homann, Large molecules, ions, radicals and small soot particles in fuel-rich hydrocarbon flames. Part IV. Large polycyclic aromatic hydrocarbons and their radicals in a fuel-rich benzene-oxygen flame, Phys. Chem. Chem. Phys. 2 (2000), pp. 1667–1675.
  • B. Apicella, A. Carpentieri, M. Alfè, R. Barbella, A. Tregrossi, P. Pucci, and A. Ciajolo, Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame, Proceedings of the Combustion Institute 31 (2007), pp. 547–553.
  • S.H. Chung and A. Violi, Insights on the nanoparticle formation process in counterflow diffusion flames, Carbon, 45 (2007), pp. 2400–2410.
  • K.O. Johansson, T. Dillstrom, M.F. Campbell, M. Monti, F. El Gabaly, P.E. Schrader, D.M. Popolan-Vaida, N. Richards-Henderson, K. Wilson, A. Violi, and H. Michelsen, Formation and emission of large furans and oxygenated hydrocarbons from flames, Proceedings of the National Academy of Sciences, in press, (2016). doi:10.1073/pnas.1604772113
  • H. Richter and J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot — a review of chemical reaction pathways, Progr. Energy Combust. Sci. 26 (2000), pp. 565–608.
  • K.O. Johansson, J.Y.W. Lai, S.A. Skeen, D.M. Popolan-Vaida, K.R. Wilson, N. Hansen, A. Violi, and H.A. Michelsen, Soot precursor formation and limitations of the stabilomer grid, Proceedings of the Combustion Institute 35 (2015), pp. 1819–1826.
  • T. Dillstrom, P. Elvati, and A. Violi, Oxygen driven soot formation, Proceedings of the Combustion Institute, in review (2016).
  • K.O. Johansson, T. Dillstrom, P. Elvati, M.F. Campbell, P.E. Schrader, D.M. Popolan-Vaida, N. Richards-Henderson, K. Wilson, A. Violi, and H. Michelsen, Radical-radical reactions, pyrene nucleation, and incipient soot formation in combustion, Proceedings of the Combustion Institute, in review (2016).
  • S. Stein and A. Fahr, High-temperature stabilities of hydrocarbons. J. Phys. Chem. 89 (1985), pp. 3714–3725.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.