2,375
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of soot formation in laminar diffusion flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry

&
Pages 35-48 | Received 05 Feb 2016, Accepted 02 Jul 2016, Published online: 10 Aug 2016

References

  • D. Lignell, J. Chen, P. Smith, T. Lu, and C. Law, The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation, Combust. Flame 151 (2007), pp. 2–28.
  • T. Bond, Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos. 118 (2013), pp. 5380–5552.
  • J. Singh, Detailed soot modelling in laminar premixed flames, Ph.D. thesis, University of Cambridge, 2006.
  • M. Smooke, P. Lin, and M. Long, Computational and experimental study of a laminar axisymmetric methane–air diffusion flame, Proc. Combust. Inst. 23 (1991), pp. 575–582.
  • M. Smooke, R. Hall, M. Colket, J. Fielding, M. Long, C. McEnally, and L. Pfefferle, Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames, Combust. Theory Model. 8 (2004), pp. 593–606.
  • R. Santoro, H. Semerjian, and R. Dobbins, Soot particle measurements in diffusion flames, Combust. Flame 51 (1983), pp. 203–218.
  • R. Santoro, T. Yeh, J. Horvath, and H. Semerjian, The transport and growth of soot particles in laminar diffusion flames, Combust. Sci. Technol. 53 (1987), pp. 89–115.
  • F. Liu, H. Guo, G.J. Smallwood, and Ö.L. Gülder, Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames, Combust. Theory Model. 7 (2003), pp. 301–315. Available at http://dx.doi.org/10.1088/1364-7830/7/2/305.
  • I. Kennedy and C. Yam, Modeling and measurements of soot and species in a laminar diffusion flame, Combust. Flame 107 (1996), pp. 368–382.
  • R. Demarco, J.L. Consalvi, and A. Fuentes, Influence of radiative property models on soot production in laminar coflow ethylene diffusion flames, in Eurotherm Conference No. 95: Computational Thermal Radiation in Participating Media IV, 18–20 April 2012, Nancy, France, pp. 91–101, Paper No. 012011. J. Phys. Conf. Ser. 369, conference 1. Available at http://stacks.iop.org/1742-6596/369/i=1/a=012011.
  • A. Khosousi and S.B. Dworkin, Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames, Combust. Flame 35 (2015), pp. 1903–1910.
  • W. Kong and F. Liu, Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities, Combust. Theory Model. 13 (2009), pp. 993–1023.
  • A. Kronenburg, R. Bilger, and J. Kent, Modeling soot formation in turbulent methane–air jet diffusion flames, Combust. Flame 121 (2000), pp. 24–40. Available at http://dx.doi.org/10.1016/S0010-2180(99)00146-7.
  • Q. Zhang, H. Guo, F. Liu, G. Smallwood, and M. Thomson, Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model, Proc. Combust. Inst. 32 (2009), pp. 761–768.
  • M. Hounslow, R. Ryall, and V. Marshall, A discretized population balance for nucleation, growth and aggregation, AIChE J. 34 (1988), pp. 1821–1832. Available at http://dx.doi.org/10.1002/aic.690341108.
  • S. Rigopoulos and A. Jones, Finite-element scheme for solution of the dynamic population balance equation, AIChE J. 49 (2003), pp. 1127–1139. Available at http://dx.doi.org/10.1002/aic.690490507.
  • S. Qamar, M. Elsner, I.A. Angelov, G. Warnecke, and A. Seidel-Morgenstern, A comparative study of high resolution schemes for solving population balances in crystallization, Comput. & Chem. Engrg 30 (2006), pp. 1119–1131. Available at http://dx.doi.org/10.1016/j.compchemeng.2006.02.012.
  • H. Wang and A. Laskin, A comprehensive reaction model of ethylene and acetylene combustion (2000). Available at http://ignis.usc.edu/Mechanisms/C2-C4/c2.html.
  • K. Leung, R. Lindstedt, and W. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame 87 (1991), pp. 289–305. Available at http://gekgasifier.pbworks.com/f/LeungLindstedtJones_CF_1991_Soot-1.pdf.
  • R. Lindstedt, Simplified soot nucleation and surface growth steps for non-premixed flames, in Soot Formation in Combustion, H. Bockhorn, ed., Vol. 59 of Springer Series in Chemical Physics, Springer-Verlag, Berlin, 1994, pp. 417–441. Available at http://dx.doi.org/10.1007/978-3-642-85167-4_24.
  • M. Smooke, M. Long, B. Connelly, M. Colket, and R. Hall, Soot formation in laminar diffusion flames, Combust. Flame 143 (2005), pp. 613–628. Available at http://dx.doi.org/10.1016/j.combustflame.2005.08.028.
  • J. Appel, H. Bockhorn, and M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons, Combust. Flame 121 (2000), pp. 122–136.
  • M. Colket and R. Hall, Successes and uncertainties in modeling soot formation in laminar, premixed flames, in Soot Formation in Combustion, H. Bockhorn, ed., Vol. 59 of Springer Series in Chemical Physics, Springer-Verlag, Berlin, 1994, pp. 442–470. Available at http://dx.doi.org/10.1007/978-3-642-85167-4_25.
  • S. Harris and A. Weiner, Soot particle growth in premixed toluene/ethylene flames, Combust. Sci. Technol. 38 (1984), pp. 75–87.
  • J. Nagle and R. Strickland-Constable, Oxidation of carbon 1000–2000 °C, in Proceedings of the 5th Conference on Carbon, 19–23 June 1961, University Park, PA, Symposium Publications Division, Pergamon Press, New York, 1962.
  • K.G. Neoh, J.B. Howard, and A.F. Sarofim, Soot oxidation in flames, in Particulate Carbon: Formation During Combustion, D. C. Siegla and G. W. Smith, eds., Plenum Press, New York, 1981, pp. 261–277.
  • R.J. Hall, M.D. Smooke, and M.B. Colket, Predictions of soot dynamics in opposed jet diffusion flames, in Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, R.F. Sawyer and F.L. Dryer, eds., Vol. 4 of the Combustion Science and Technology Book Series, Gordon and Breach Science Publishers, Amsterdam, 1997, pp. 189–229.
  • C. Megaridis and R. Dobbins, Soot aerosol dynamics in a laminar ethylene diffusion flame, Proc. Combust. Inst. 22 (1988), pp. 353–362.
  • B. van Leer, Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second order scheme, J. Comp. Physics 14 (1974), pp. 361–270.
  • Q. Zhang, M. Thomson, H. Guo, F. Liu, and G. Smallwood, A numerical study of soot aggregate formation in a laminar coflow diffusion flame, Combust. Flame 156 (2009), pp. 697–705.
  • S.B. Dworkin, Q. Zhang, M.J. Thomson, N.A. Slavinskaya, and U. Riedel, Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame, Combust. Flame 158 (2011), pp. 1682–1695.