273
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of the ignition and annihilation of CH4/N2/O2 mixtures under MILD operative conditions with detailed chemistry

, , , &
Pages 120-136 | Received 08 Feb 2016, Accepted 29 Jul 2016, Published online: 23 Sep 2016

References

  • Y. Minamoto, N. Swaminathan, S.R. Cant, and T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion, Combust. Flame 161 (2014), pp. 2801–2814.
  • E. Mastorakos, Ignition of turbulent non-premixed flames, Prog. Energ. Combust. Sci. 35 (2009), pp. 57–97.
  • S. Delhaye, L.M.T. Somers, J.A. Van Oijen, and L.P.H. De Goey, Incorporating unsteady flow-effects in flamelet-generated manifolds, Combust. Flame 155 (2008), pp. 133–144.
  • S.B. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), pp. 1–31.
  • N. Punati, J.C. Sutherland, A.R. Kerstein, E.R. Hawkes, and J.H. Chen, An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition, Proc. Combust. Inst. 33 (2011), pp. 1515–1522.
  • J.C. Sutherland, and A. Parente, Combustion modeling using principal component analysis, Proc. Combust. Inst. 32 (2009), pp. 1563–1570.
  • A. Parente, J.C. Sutherland, B.B. Dally, L. Tognotti, and P.J. Smith, Investigation of the MILD combustion regime via Principal Component Analysis, Proc. Combust. Inst. 33 (2011), pp. 3333–3341.
  • M. Ihme, and Y.C. See, LES flamelet modeling of a three-stream MILD combustor: Analysis of flame sensitivity to scalar inflow conditions, Proc. Combust. Inst. 33 (2011), pp. 1309–1317.
  • J.H. Chen, Petascale direct numerical simulation of turbulent combustion-fundamental insights towards predictive models, Proc. Combust. Inst. 33 (2011), pp. 99–123.
  • S. Mukhopadhyay, and J. Abraham, Influence of compositional stratification on autoignition in n-heptane/air mixtures, Comb. Flame 158 (2011), pp. 1064–1075.
  • M. de Joannon, A. Cavaliere, T. Faravelli, E. Ranzi, P. Sabia, and A. Tregrossi, Analysis of process parameters for steady operations in methane mild combustion technology, Proc. Combust. Inst. 30 (2005), pp. 2605–2612.
  • P. Sabia, M. de Joannon, A. Picarelli, and R. Ragucci, Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure, Combust. Flame 160 (2013), pp. 47–55.
  • M. de Joannon, P. Sabia, G. Cozzolino, G. Sorrentino, and A. Cavaliere, Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion, Combust. Sci. Tech. 184 (2012), pp. 1207–1218.
  • G. Sorrentino, D. Scarpa, and A. Cavaliere, Transient inception of MILD combustion in hot diluted diffusion ignition (HDDI) regime: A numerical study, Proc. Combust. Inst. 34 (2013), pp. 3239–3247.
  • L.M. Verhoeven, W.J.S. Ramaekers, J.A. Van Oijen, and L.P.H. De Goey, Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds, Combust. Flame 159 (2012), pp. 230–241.
  • E. Mastorakos, T.A. Baritaud, and T.J. Poinsot, Numerical simulations of autoignition in turbulent mixing flows, Combust. Flame 109 (1997), pp. 198–223.
  • R. Hilbert, and D. Thévenin, Autoignition of turbulent non-premixed flames investigated using direct numerical simulations, Combust. Flame 128 (2002), pp. 22–37.
  • M.J. Clifford, S.M. Cox, and E.P.L. Roberts, The influence of a lamellar structure upon the yield of a chemical reaction, Chem. Eng. Res. Des. 78 (2000), pp. 371–377.
  • S. Cerbelli, M.M. Alvarez, and F.J. Muzzio, Prediction and quantification of micromixing intensities in laminar flows, AIChE J. 48 (2002), pp. 686–700.
  • J.M. Ottino, Description of mixing with diffusion and reaction in terms of the concept of material-surfaces, J. Fluid Mech. 114 (1982), pp. 83–103.
  • E.P.L. Roberts, Determination of the local micromixing structure in laminar flows, Chem. Eng. J. 160 (2010), pp. 267–276.
  • M. J. Clifford, S.M. Cox, E.P.L. Roberts, Lamellar modelling of reaction, diffusion and mixing in a two-dimensional flow, Chem. Eng. J. 71 (1998), pp. 49–56.
  • M.J. Clifford, S.M. Cox, and E.P.L. Roberts, Measuring striation widths, Phys. Lett. A 260 (1999), pp. 209–217.
  • A. Cavaliere, and R. Ragucci, Gaseous diffusion flames: simple structures and their interaction, Prog. Energ. Combust. Sci. 27 (2001), pp. 547–585.
  • M.B. Johnson, and A. Sobiesiak, Hysteresis of methane inverse diffusion flames with co-flowing air and combustion products, Proc. Combust. Inst. 33 (2011), pp. 1079–1085.
  • M. de Joannon, P. Sabia, G. Sorrentino, and A. Cavaliere, Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime, Proc. Combust. Inst. 32 (2009), pp. 3147–3154.
  • E. Abtahizadeh, J. van Oijen, and P. de Goey, Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams, Comb. Flame 159 (2012), pp. 2155–2165.
  • A. Bourlioux, B. Cuenot, and T. Poinsot, Asymptotic and numerical study of the stabilization of diffusion flames by hot gas. Comb. Flame 120 (2000), pp. 143–159.
  • R. Nozaki, Y. Nakamura, and A. Kitajima, Study on ignition-like behavior induced by interaction of curved non-premixed (Diffusion) flames, Comb. Sci. Tech. 184 (2012), pp. 1541–1552.
  • Y. Nakamura, R. Nozaki, and A. Kitajima, Study of hyperbolic diffusion flames: Appearance of instability caused by an interaction of stretched diffusion flames, Proc. Combust. Inst. 33 (2011), pp. 1129–1136.
  • T. Selerland, and A.R. Karagozian, Ignition, burning and extinction of a strained fuel strip with complex kinetics. Comb. Sci. Tech. 131 (1998), pp. 251–276.
  • R. Knikkerr, A. Dauptain, B. Cuenot, and T. Poinsot, Comparison of computational methodologies for ignition of diffusion layers. Comb. Sci. Tech. 175 (2003), pp. 1783–1806.
  • C.A. Petrov, and A.F. Ghoniem, Dynamics and Structure of Interacting Nonpremixed Flames, Combust. Flame 115 (1998), pp. 180–194.
  • J.A. Van Oijen, Direct numerical simulation of autoigniting mixing layers in MILD combustion, Proc. Combust. Inst. 34 (2013), pp. 1163–1171.
  • A. Viggiano, Exploring the effect of fluid dynamics and kinetic mechanisms on n-heptane autoignition in transient jets, Combust. Flame 157 (2010), pp. 328–340.
  • ANSYS, Inc. ANSYS FLUENT 12.0 Theory Guide. ANSYS, Inc., Canonsburg, PA, 2009.
  • R.J. Kee, F.M. Rupley, J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. Dixon-lewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg, C. Wang, O. Adigun, W.G. Houf, C.P. Chou, and S.F. Miller, CHEMKIN collection, release 3.7. Reaction Design, San Diego, CA, 2003.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, Jr., V.V. Lissianski, and Z. Qin, GRI-MECH 3.0, Available at http://www.me.berkeley.edu/gri_mech/.
  • A. Parente, C. Galletti, and L. Tognotti, Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels, Int. J. Hydrogen Energy 33 (2008), pp. 553–7564.
  • N. Enjalbert, P. Domingo, and L. Vervisch, Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation, Combust. Flame 159 (2012), pp. 336–352.
  • B. C. Choi, K. N. Kim, and S.H. Chung, Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion, Combust. Flame 156 (2009), pp. 396–404.
  • C. Meneveau, and T. Poinsot, Stretching and quenching of flamelets in premixed turbulent combustion. Comb. Flame 86 (1991), pp. 311–332.
  • F.E. Marble, and J.E. Broadwell. The coherent flame model for turbulent chemical reactions. Project squid headquarters, Chaffee Hall, Purdue Univ. Technical Report TRW-9-PU 1977.
  • C.K. Law, Propagation, structure, and limit phenomena of laminar flames at elevated pressures. Comb. Sci. Tech. 178 (2006), pp. 335–360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.