612
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Skeletal kinetic mechanism for diesel combustion

, , , &
Pages 79-92 | Received 08 Feb 2016, Accepted 29 Jul 2016, Published online: 01 Sep 2016

References

  • W.J. Pitz and C.J. Mueller, Recent progress in the development of diesel surrogate fuels, Prog. Energ. Combust. Sci. 37 (2011), pp. 330–350.
  • O. Herbinet, B. Sirjean, and V. Warth, Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models, Chem. Soc. Rev. 40 (2011), pp. 4762–4782.
  • F. Battin-Leclerc, E. Blurock, R. Bounaceur, R. Fournet, P.-A. Glaude, O. Herbinet, B. Sirjean, and V. Warth, Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models, Chem. Soc. Rev. 40 (2011), pp. 4762–4782.
  • A. Frassoldati, G. D'Errico, T. Lucchini, A. Stagni, A. Cuoci, T. Faravelli, A. Onorati, and E. Ranzi, Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations, Comb. Flame 162 (2015), pp. 3991–4007.
  • A. Violi, S. Yan, E.G. Eddings, A.F. Sarofim, S. Granata, T. Faravelli, and E. Ranzi, Experimental formulation and kinetic model for JP-8 surrogate mixtures, Comb. Sci. Tech. 174 (2002), pp. 399–417.
  • S. Dooley, S.H. Won, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C.-J. Sung, and H. Wang, The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena, Comb. Flame 159 (2012), pp. 1444–1466.
  • E. Ranzi, A. Frassoldati, S. Granata, and T. Faravelli, Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes, Ind. Eng. Chem. Res. 44 (2005), pp. 5170–5183.
  • A. Agosta, N.P. Cernansky, D.L. Miller, T. Faravelli, and E. Ranzi, Reference components of jet fuels: kinetic modeling and experimental results, Exp. Therm. Fluid Sci. (2004) 28, pp. 701–708.
  • Y. Ra and R.D. Reitz, A combustion model for IC engine combustion simulations with multi-component fuels, Comb. Flame 158 (2011), pp. 69–90.
  • E.G. Eddings, S. Yan, W. Ciro, and A.F. Sarofim, Formulation of a surrogate for the simulation of jet fuel pool fires, Combust. Sci. Tech. 177 (2005), pp. 715–739.
  • M.A. Oehlschlaeger, H.-P.S. Shen, A. Frassoldati, S. Pierucci, and E. Ranzi, Experimental and kinetic modeling study of the pyrolysis and oxidation of decalin, Energy Fuels 23 (2009), pp. 1464–1472.
  • K. Seshadri, A. Frassoldati, A. Cuoci, T. Faravelli, U. Niemann, P. Weydert, and E. Ranzi, Experimental and kinetic modeling study of combustion of JP-8, its surrogates and components in laminar premixed flows, Combust. Theor. Model. 15 (2011), pp. 569–583.
  • P. Dagaut, A. Ristori, A. Frassoldati, T. Faravelli, G. Dayma, and E. Ranzi, Experimental study of tetralin oxidation and kinetic modeling of its pyrolysis and oxidation, Energy Fuels 27 (2013), pp. 1576–1585.
  • C. Saggese, A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi, A lumped approach to the kinetic modeling of pyrolysis and combustion of biodiesel fuels, Proc. Comb. Inst. 34 (2013), pp. 427–434.
  • Z. Luo, S. Som, S.M. Sarathy, M. Plomer, W.J. Pitz, D.E. Longman, T. Lu, Development and validation of an n-dodecane skeletal mechanism for spray combustion applications, Comb. Theor. Model. 18 (2014), pp. 187–203.
  • E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli, Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels, Int. J. Chem. Kin. 6 (2014), pp. 512–542.
  • T. Edwards and L.Q. Maurice, Surrogate mixtures to represent complex aviation and rocket fuels, J Propulsion Power 17 (2001), pp. 461–466.
  • G. Xiao, Y. Zhang, and J. Lang, Kinetic modeling study of the ignition process of homogeneous charge compression ignition engine fueled with three-component diesel surrogate, Ind. Eng. Chem. Res. 52 (2013), pp. 3732–3741.
  • J. Gustavsson and V.I. Golovitchev, Spray combustion simulation based on detailed chemistry approach for diesel fuel surrogate model, SAE Paper (2003), 2003-01-1848.
  • J.J. Hernandez, J. Sanz-Argent, J. Benajes, and S. Molina, Selection of a diesel fuel surrogate for the prediction of auto-ignition under HCCI engine conditions, Fuel 87 (2008), pp. 655–665.
  • W. Hentschel, K.P. Schindler, and O. Haahtela, European diesel research IDEA –experimental results from DI diesel engine investigations, SAE paper (1994), 941954.
  • H. Barths, C. Hasse, G. Bikas, and N. Peters, Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model, Proc. Combust. Inst. 28 (2000), pp. 1161–1168.
  • R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels, Proc. Combust. Inst. 32 (2009), pp. 737–744.
  • K. Seshadri, Chemical kinetic characterization of autoignition and combustion of diesel and JP-8, Tech. Rep. ADA429299, US Army Research Office, California Univ San Diego La Jolla; 2003.
  • L. Bo, N. Liu, R. Zhao, H. Zhang, and F.N. Egolfopoulos, Extinction studies of flames of heavy neat hydrocarbons and practical fuels, J. Prop. Power 29 (2013), pp. 352–361.
  • H.P. Ramirez, K. Hadj-Ali, P. Dievart, G. Moreac, and P. Dagaut, Kinetics of oxidation of commercial and surrogate diesel fuels in a jet-stirred reactor: experimental and modeling studies, Energy & Fuels 24 (2010), pp. 1668–1676.
  • E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, and C.K. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energ. Combust. Sci. 38 (2012), pp. 468–501.
  • M. Mehl, T. Faravelli, F. Giavazzi, E. Ranzi, P. Scorletti, A. Tardani, and D. Terna, Detailed chemistry promotes understanding of octane numbers and gasoline sensitivity, Energy Fuels 20 (2006), pp. 2391–2398.
  • M. Mehl, A. Tardani, T. Faravelli, E. Ranzi, G. D'Errico, T. Lucchini, A. Onorati, D. Miller, and N. Cernansky, A multizone approach to the detailed kinetic modeling of HCCI combustion, SAE Paper (2007), 24-0086.
  • A. Stagni, A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi, Skeletal mechanism reduction through species-targeted sensitivity analysis. Comb. Flame 163 (2016), pp. 382–393.
  • P. Pepiot-Desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Comb. Flame 154 (2008), pp. 67–81.
  • K.E. Niemeyer, C.J. Sung, and M.P. Raju, Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Comb. Flame, 157 (2010), pp. 1760–1770.
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms, Comp. Phys. Commun. 192 (2015), pp. 237–264.
  • O. Herbinet, B. Husson, M. Ferrari, P.-A. Glaude, and F. Battin-Leclerc, Low temperature oxidation of benzene and toluene in mixture with n-decane, Proc. Comb. Inst. 34 (2013), pp. 297–305.
  • K. Mati, A. Ristori, G. Pengloan, and P. Dagaut, Oxidation of 1-methylnaphthalene at 1–13 atm: experimental study in a JSR and detailed chemical kinetic modeling, Combust. Sci. Technol. 179 (2007), pp. 1261–1285.
  • C.R. Shaddix, K. Brezinsky, and I. Glassman, Oxidation of 1-methylnaphthalene, Twenty-Fourth Symposium (International) on Combustion (1992), Elsevier, Vol. 24, No. 1, pp. 683–690.
  • H. Wang, S.J. Warner, M.A. Oehlschlaeger, R. Bounaceur, J. Biet, P.-A. Glaude, and F. Battin-Leclerc, An experimental and kinetic modeling study of the autoignition of a-methylnaphthalene/air and a-methylnaphthalene/n-decane/air mixtures at elevated pressures, Combust. Flame 157 (2010), pp. 1976–1988.
  • U. Pfahl, K. Fieweger, and G. Adomeit, Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions, Proc. Combust. Inst. 26 (1996), pp. 781–789.
  • H.-P.S. Shen, J. Steinberg, J. Vanderover, and M.A. Oehlschlaeger, A shock tube study of the ignition of n-heptane, n-decane, n-dodecane, and n-tetradecane at elevated pressures, Energy Fuels 23 (2009), pp. 2482–2489.
  • V.P. Zhukov, V.A. Sechenov, and A. Yu Starikovskii, Autoignition of n-decane at high pressure, Combust. Flame 153 (2008), pp. 130–136.
  • X. Hui and C.-J. Sung, Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures, Fuel 109 (2013), pp. 191–200.
  • C. Ji, E. Dames, Y.L. Wang, H. Wang, and F.N. Egolfopoulos, Propagation and extinction of premixed C5–C12 n-alkane flames, Combust. Flame 157 (2010), pp. 277–287.
  • K. Kumar, J.E. Freeh, C.J. Sung, and Y. Huang, Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures. J Propulsion Power, 23 (2007), pp. 428–436.
  • A. Moghaddas, K. Eisazadeh-Far, and H. Metghalchi, Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures, Combust. Flame 159 (2012), pp. 1437–1443.
  • P. Wagner and G.L. Dugger, Flame propagation. V. Structural influences on burning velocity. Comparison of measured and calculated burning velocity, J. Am. Chem. Soc. 77 (1955), pp. 227–231.
  • Z. Zhao, J. Li, A. Kazakov, S.P. Zeppieri, and F.L. Dryer, Burning velocities and a high-temperature skeletal kinetic model for n-decane, Combust. Sci. Tech. 177 (2004), pp. 89–106.
  • O. Moriue, C. Eigenbrod, H.J. Rath, J. Sato, K. Okai, M. Tsue, and M. Kono, Effects of dilution by aromatic hydrocarbons on staged ignition behavior of n-decane droplets, Proc. Comb. Inst. 28 (2000), pp. 969–975.
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Numerical modeling of auto-ignition of isolated fuel droplets in microgravity. Proc. Comb. Inst. 35 (2015), pp. 1621–1627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.