227
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Comparative investigation of homogeneous autoignition of DME/air and EtOH/air mixtures at low initial temperatures

, &
Pages 93-119 | Received 15 Mar 2016, Accepted 08 Sep 2016, Published online: 21 Oct 2016

References

  • C. Arcoumanis, C. Bae, R. Crookes, and E. Kinoshita, The potential of Di-Methyl Ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel 87 (2008), pp. 1014–1030.
  • H. Curran, S. Fischer, and F. Dryer, The reaction kinetics of Di-Methyl Ether. II: Low-temperature oxidation in flow reactors, Int. J. Chem. Kinetics 32 (2000), pp. 741–759.
  • G. Mittal, M. Chaos, C.J. Sung, and F.L. Dryer, Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling, Fuel Process. Technol. 89 (2008), pp. 1244–1254. Available at http://dx.doi.org/10.1016/j.fuproc.2008.05.021.
  • Z. Li, W. Wang, Z. Huang, and M.A. Oehlschlaeger, Dimethyl ether autoignition at engine-relevant conditions, Energy & Fuels 27 (2013), pp. 2811–2817.
  • W.K. Metcalfe, S.M. Burke, S.S. Ahmed, and H.J. Curran, A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels, Int. J. Chem. Kinetics 45 (2013), pp. 638–675.
  • U. Burke, K.P. Somers, P. O’Toole, C.M. Zinner, N. Marquet, G. Bourque, E.L. Petersen, W.K. Metcalfe, Z. Serinyel, and H.J. Curran, An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures, Combust. Flame 162 (2015), pp. 315–330.
  • M.J. Christie, N. Fortino, and H. Yilmaz, Parameter optimization of a turbo charged direct injection flex fuel SI engine, SAE Int. J. Engines 2 (2009), pp. 123–133.
  • US Congress, Clean Air Act Amendments, Public Law, 1990.
  • N.M. Marinov, A detailed chemical kinetic model for high temperature ethanol oxidation, Int. J. Chem. Kinetics 31 (1999), pp. 183–220.
  • G. Mittal, S.M. Burke, V.A. Davies, B. Parajuli, W.K. Metcalfe, and H.J. Curran, Autoignition of ethanol in a rapid compression machine, Combust. Flame 161 (2014), pp. 1164–1171.
  • S.M. Sarathy, P. Oßwald, N. Hansen, and K. Kohse-Höinghaus, Alcohol combustion chemistry, Prog. Energy Combust. Sci. 44 (2014), pp. 40–102.
  • F. Herrmann, B. Jochim, P. Oßwald, L. Cai, H. Pitsch, and K. Kohse-Höinghaus, Experimental and numerical low-temperature oxidation study of ethanol and dimethyl ether, Combust. Flame 161 (2014), pp. 384–397.
  • E.A. Tingas, D.C. Kyritsis, and D.A. Goussis, Autoignition dynamics of DME/air and EtOH/air homogeneous mixtures, Combust. Flame 162 (2015), pp. 3263–3276.
  • E.A. Tingas, D.C. Kyritsis, and D.A. Goussis, Ignition delay control of DME/air and EtOH/air homogeneous autoignition with the use of various additives, Fuel 169 (2016), pp. 15–24.
  • H.J. Curran, W.J. Pitz, C.K. Westbrook, P. Dagaut, J.C. Boettner, and M. Cathonnet, A wide range modeling study of dimethyl ether oxidation, Int. J. Chem. Kinetics 30 (1998), pp. 229–241.
  • Z. Zhao, M. Chaos, A. Kazakov, and F.L. Dryer, Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether, Int. J. Chem. Kinetics 40 (2008), pp. 1–18.
  • L. Pan, S. Kokjohn, and Z. Huang, Development and validation of a reduced chemical kinetic model for dimethyl ether combustion, Fuel 160 (2015), pp. 165–177.
  • Z. Wang, X. Zhang, L. Xing, L. Zhang, F. Herrmann, K. Moshammer, F. Qi, and K. Kohse-Höinghaus, Experimental and kinetic modeling study of the low-and intermediate-temperature oxidation of dimethyl ether, Combust. Flame 162 (2015), pp. 1113–1125.
  • S. Deng, P. Zhao, D. Zhu, and C.K. Law, NTC-affected ignition and low-temperature flames in nonpremixed DME/air counterflow, Combust. Flame 161 (2014), pp. 1993–1997.
  • D.J. Diamantis, E. Mastorakos, and D.A. Goussis, H2/air autoignition: The nature and interaction of the developing explosive modes, Combust. Theory Model. 19 (2015), pp. 382–433.
  • F.A. Williams, Lectures on applied mathematics in combustion: Past contributions and future problems in laminar and turbulent combustion, Phys. D: Nonlinear Phenom. 20 (1986), pp. 21–34.
  • J. Buckmaster, The contribution of asymptotics to combustion, Phys. D: Nonlinear Phenom. 20 (1986), pp. 91–108.
  • J. Buckmaster, P. Clavin, A. Linan, M. Matalon, N. Peters, G. Sivashinsky, and F.A. Williams, Combustion theory and modeling, Proc. Combust. Inst. 30 (2005), pp. 1–19.
  • E. Fernandez-Tarrazo, A.L. Sanchez, and F.A. Williams, Hydrogen–air mixing-layer ignition at temperatures below crossover, Combust. Flame 160 (2013), pp. 1981–1989.
  • L. Veggi and P. Boivin, Explicit formulation of the reactivity of hydrogen, methane and decane, Combust. Flame 162 (2015), pp. 580–585. Available at http://dx.doi.org/10.1016/j.combustflame.2014.09.004.
  • A.S. Tomlin, T. Turanyi, and M.J. Pilling, Mathematical tools for the construction, investigation and reduction of combustion mechanisms, Comprehensive Chem. Kinetics 35 (1997), pp. 293–437. Available at http://dx.doi.org/10.1016/S0069-8040(97)80019-2.
  • T. Lu and C. Law, Towards accommodating realistic fuel chemistry in large scale computations, Prog. Energy Combust. Sci. 35 (2009), pp. 192–215.
  • D.A. Goussis and U. Maas, Model reduction for combustion chemistry, Fluid Mech. Appl. 95 (2011), pp. 193–220.
  • U. Maas and A.S. Tomlin, Time-scale splitting-based mechanism reduction, in Cleaner Combustion, F. Battin-Leclerc, J.M. Simmie, and E. Blurock, eds., Green Energy and Technology, Springer, London, 2013, pp. 467–484.
  • T. Turányi and A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer, Berlin, 2014.
  • D.A. Goussis and G. Skevis, Nitrogen chemistry controlling steps in methane–air premixed flames, in Computational Fluid and Solid Mechanics, K.J. Bathe, ed., Elsevier, Amsterdam, 2005, pp. 650–653.
  • P.D. Kourdis and D.A. Goussis, Glycolysis in saccharomyces cerevisiae: Algorithmic exploration of robustness and origin of oscillations, Math. Biosci. 243 (2013), pp. 190–214.
  • D.A. Goussis and H.N. Najm, Model reduction and physical understanding of slowly oscillating processes: The circadian cycle, SIAM J. Multiscale Model. Simul. 5 (2006), pp. 1297–1332.
  • M. Valorani, H.N. Najm, and D.A. Goussis, CSP analysis of a transient flame–vortex interaction: Time scales and manifolds, Combust. Flame 134 (2003), pp. 35–53.
  • H.N. Najm, M. Valorani, D.A. Goussis, and J. Prager, Analysis of methane–air edge flame structure, Combust. Theory Model. 14 (2010), pp. 257–294.
  • J. Prager, H.N. Najm, M. Valorani, and D.A. Goussis, Structure of n-heptane/air triple flames in partially-premixed mixing layers, Combust. Flame 158 (2011), pp. 2128–2144.
  • M. Kooshkbaghi, C.E. Frouzakis, K. Boulouchos, and I.V. Karlin, n-Heptane/air combustion in perfectly stirred reactors: Dynamics, bifurcations and dominant reactions at critical conditions, Combust. Flame 162 (2015), pp. 3166–3179.
  • S. Gupta, H.G. Im, and M. Valorani, Classification of ignition regimes in HCCI combustion using computational singular perturbation, Proc. Combust. Inst. 33 (2011), pp. 2991–2999.
  • R. Shan and T. Lu, A bifurcation analysis for limit flame phenomena of DME/air in perfectly stirred reactors, Combust. Flame 161 (2014), pp. 1716–1723.
  • D.J. Diamantis, D.C. Kyritsis, and D.A. Goussis, The reactions favoring or opposing the development of explosive modes: Auto-ignition of a homogeneous methane/air mixture, Proc. Combust. Inst. 35 (2015), pp. 267–274.
  • D. Manias, D. Diamantis, and D. Goussis, Algorithmic identification of the reactions related to the initial development of the time scale that characterizes CH4/air autoignition, J. Energy Eng. 141 (2014). Available at http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000249.
  • D. Manias, E. Tingas, C. Frouzakis, K. Boulouchos, and D. Goussis, The mechanism by which CH2O and H2O2 additives affect the autoignition of CH4/air mixtures, Combust. Flame 164 (2016), pp. 111–125.
  • S.H. Lam and D.A. Goussis, Understanding complex chemical kinetics with Computational Singular Perturbation, Proc. Combust. Inst. 22 (1988), pp. 931–941.
  • S.H. Lam and D.A. Goussis, CSP method for simplifying kinetics, Int. J. Chem. Kinetics 26 (1994), pp. 461–486.
  • C. Trevino, Ignition phenomena in H2–O2 mixtures, Prog. Aeronaut. Astronaut. 131 (1989), pp. 19–43.
  • A.L. Sanchez, A. Linan, and F.A. Williams, A WKB analysis of radical growth in the hydrogen–air mixing layer, J. Eng. Math. 31 (1997), pp. 19–130.
  • N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combust. Flame 128 (2002), pp. 38–59.
  • Z. Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, and T. Lu, Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow, Combust. Flame 159 (2012), pp. 265–274.
  • P. Saxena and F.A. Williams, Numerical and experimental studies of ethanol flames, Proc. Combust. Inst. 31 (2007), pp. 1149–1156.
  • T. Norton and F. Dryer, An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor, Int. J. Chem. Kinetics 24 (1992), pp. 319–344.
  • F.M. Haas, M. Chaos, and F.L. Dryer, Low and intermediate temperature oxidation of ethanol and ethanol–PRF blends: An experimental and modeling study, Combust. Flame 156 (2009), pp. 2346–2350.
  • M. Konno, Z. Chen, and K. Miki, Computational and experimental study on the influence of formaldehyde on HCCI combustion fueled with dimethyl ether, SAE Technical Paper 2003-01-1826, 2003. Available at http://dx.doi.org/10.4271/2003-01-1826.
  • H. Yamada, K. Suzaki, H. Sakanashi, N. Choi, and A. Tezaki, Kinetic measurements in homogeneous charge compression of dimethyl ether: Role of intermediate formaldehyde controlling chain branching in the low-temperature oxidation mechanism, Combust. Flame 140 (2005), pp. 24–33.
  • P. Dagaut, C. Daly, J.M. Simmie, and M. Cathonnet, The oxidation and ignition of dimethylether from low to high temperature (500–1600 K): Experiments and kinetic modeling, Proc. Combust. Inst. 27 (1998), pp. 361–369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.