334
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulations of incipient carbonaceous nanoparticle formation at flame conditions

, , , , , & show all
Pages 49-61 | Received 19 Jan 2016, Accepted 15 Sep 2016, Published online: 20 Oct 2016

References

  • A. Ciajolo, Condensed phases in soot formation process, in Combustion Generated Fine Carbonaceous Particles, H. Bockhorn, A. D'Anna, A.F. Sarofim, and H. Wang, eds., KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 333–344.
  • J.H. Miller and J.D. Herdman, Computational and experimental evidence for polynuclear aromatic hydrocarbon aggregation in flames, in Combustion Generated Fine Carbonaceous Particles, H. Bockhorn, A. D'Anna, A.F. Sarofim, and H. Wang, eds., KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 259–276.
  • H.X. Chen and R.A. Dobbins, Crystallogenesis of particles formed in hydrocarbon combustion, Combust. Sci. Technol. 159 (2000), pp. 109–128.
  • J. Happold, H.-H. Grotheer, and M. Aigner, Soot precursors consisting of stacked pericondensed PAHs, in Combustion Generated Fine Carbonaceous Particles, H. Bockhorn, A. D'Anna, A.F. Sarofim and H. Wang, eds., KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 277–288.
  • T. Ishiguro, Y. Takatori, and K. Akihama, Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell, Combust. Flame 108 (1997), pp. 231–234.
  • H. Sabbah, L. Biennier, S.J. Klippenstein, I.R. Sims, and B.R. Rowe, Exploring the role of PAHs in the formation of soot: Pyrene Dimerization, J Phys Chem Lett 1 (2010), pp. 2962–2967.
  • M. Sirignano, M. Alfè, A. Tregrossi, A. Ciajolo, and A. D'Anna, Experimental and modeling study on the molecular weight distribution and properties of carbon particles in premixed sooting flames, Proc. Combust. Inst. 33 (2011), pp. 633–640.
  • R.L. Vander Wal, A. Yezerets, N.W. Currier, D.H. Kim, and C.M. Wang, HRTEM Study of diesel soot collected from diesel particulate filters, Carbon 45 (2007), pp. 70–77.
  • M. Alfè, B. Apicella, R. Barbella, J.N. Rouzaud, A. Tregrossi, and A. Ciajolo, Structure–property relationship in nanostructures of young and mature soot in premixed flames, Proc. Combust. Inst. 32 (2009), pp. 697–704.
  • A.B. Palotas, L.C. Rainey, C.J. Feldermann, A.F. Sarofim, and J.B. Vander Sande, Soot morphology: An application of image analysis in high-resolution transmission electron microscopy, Microsc. Res. Tech. 33 (1996), pp. 266–78.
  • G. De Falco, M. Commodo, P. Minutolo, and A. D'Anna, Flame-Formed Carbon Nanoparticles: Morphology, Interaction Forces, and Hamaker Constant from AFM, Aerosol. Sci. Tech. 49 (2015), pp. 281–289.
  • C. Russo, M. Alfè, J.-N. Rouzaud, F. Stanzione, A. Tregrossi, and A. Ciajolo, Probing structures of soot formed in premixed flames of methane, Ethylene and benzene, Proc. Combust. Inst. 34 (2013), pp. 1885–1892.
  • A. Ciajolo, A. D'Anna, and R. Barbella, PAH and High Molecular Weight Species Formed in a Premixed Methane Flame, Combust. Sci. Technol. 100 (1994), pp. 271–281.
  • A. Ciajolo, A. D'Anna, R. Barbella, A. Tregrossi, and A. Violi, The effect of temperature on soot inception in premixed ethylene flames, Symposium (International) on Combustion 26 (1996), pp. 2327–2333.
  • A. Ciajolo, R. Barbella, A. Tregrossi, and L. Bonfanti, Spectroscopic and compositional signatures of pah-loaded mixtures in the soot inception region of a premixed ethylene flame, Symposium (International) on Combustion. 27 (1998), pp. 1481–1487.
  • J. Singh, R.I.A. Patterson, M. Kraft, and H. Wang, Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames, Combust. Flame 145 (2006), pp. 117–127.
  • A. D'Anna, Detailed kinetic modeling of particulate formation in rich premixed flames of ethylene, Energy. Fuel. 22 (2008), pp. 1610–1619.
  • M.S. Celnik, M. Sander, A. Raj, R.H. West, and M. Kraft, Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate, Proc. Combust. Inst. 32 (2009), pp. 639–646.
  • A. Raj, M. Celnik, R. Shirley, M. Sander, R. Patterson, R. West, and M. Kraft, A statistical approach to develop a detailed soot growth model using PAH characteristics, Combust. Flame. 156 (2009), pp. 896–913.
  • G. Blanquart and H. Pitsch, A joint volume-surface-hydrogen multi-variate model for soot formation, in Combustion Generated Fine Carbonaceous Particles, H. Bockhorn, A. D'Anna, A.F. Sarofim, and H. Wang, eds., KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 437–463.
  • F. Mauss, K. Netzell, C. Marchal, and G. Moréac, Modelling the soot particle size distribution functions using a detailed kinetic soot model and a sectional method, in Combustion Generated Fine Carbonaceous Particles, H. Bockhorn, A. D'Anna, A.F. Sarofim, and H. Wang, eds., KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 465–482.
  • M. Sirignano, J. Kent, and A. D'Anna, Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles, Combust. Flame. 157 (2010), pp. 1211–1219.
  • A. D'Anna, A kinetic model of nanoparticle formation in flames, in Combustion Generated Fine Carbonaceous Particles, H. Bockhorn, A. D'Anna, A.F. Sarofim, and H. Wang, eds., KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 289–320.
  • A. D'Anna, M. Sirignano, and J. Kent, A model of particle nucleation in premixed ethylene flames, Combust. Flame. 157 (2010), pp. 2106–2115.
  • A. Violi, Modeling of soot particle inception in aromatic and aliphatic premixed flames, Combust. Flame. 139 (2004), pp. 279–287.
  • D. Wong, R. Whitesides, C.A. Schuertz, and M. Frenklach, Molecular Dynamics simulations of PAH dimerization, in Combustion Generated Fine Carbonaceous Particles, KIT Scientific Publishing, Karlsruhe, Germany, 2009, pp. 247–257.
  • J.D. Herdman and J.H. Miller, Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters, J Phys Chem A 112 (2008), pp. 6249–6256
  • T.S. Totton, A.J. Misquitta, and M. Kraft, A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures, Phys. Chem. Ch. Ph. 14 (2012), pp. 4081–4094.
  • A. Violi, A.F. Sarofim, and G.A. Voth, Kinetic Monte Carlo–Molecular Dynamics approach to model soot inception, Combust. Sci. Technol. 176(5-6) (2004), pp. 991–1005.
  • A. Violi and S. Izvekov, Soot primary particle formation from multiscale coarse-grained molecular dynamics simulation, Proc. Combust. Inst. 31(1) (2007), pp. 529–537.
  • S.H. Chung and A. Violi, Nucleation of fullerenes as a model for examining the formation of soot, J Chem Phys 132 (2010), 174502.
  • S.H. Chung and A. Violi, Peri-condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons, Proc. Combust. Inst. 33 (2011), pp. 693–700.
  • E.K.Y. Yapp and M. Kraft, Modelling soot formation: model of particle formation, in Cleaner Combustion: Developing Detailed Chemical Kinetic Models, Green Energy and Technology, 2013, pp. 389–407.
  • A. de Candia, E. Del Gado, A. Fierro, N. Sator, and A. Coniglio, Colloidal gelation, percolation and structural arrest, Physica A: Statistical Mechanics and its Applications 358 (2005), pp. 239–248.
  • L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules, Phys. Rev. 159 (1967), pp. 98–103.
  • S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984), pp. 255–268.
  • W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985), pp. 1695–1697.
  • P.H. Hünenberger, Thermostat algorithms for molecular dynamics simulations, Adv. Polym. Sci. 173 (2005), pp. 105–149.
  • K.T. Tang and J.P. Toennies, An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients, J Chem Phys 80 (1984), pp. 3726–3741.
  • R.P. Sear, Nucleation: theory and applications to protein solutions and colloidal suspensions, J Phys: Condens Mat 19(3):033101 (2007), pp. 1–28.
  • R.J. Samson, G.W. Mulholland, and J.W. Gentry, Structural Analysis of Soot Agglomerates, Langmuir 3(2) (1987), pp. 272–281.
  • K.A. Katrinak, P. Rez, P.R. Perkes, and P.R. Buseck, Fractal geometry of carbonaceous aggregates from an urban aerosol, Environ. Sci. Technol. 27 (3) (1993), pp. 539–547.
  • A. D'Alessio, A.C. Barone, R. Cau, A. D'Anna, and P. Minutolo, Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm, Proc. Combust. Inst. 30 (2005), pp. 2595–2603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.