325
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic inference of reaction rate parameters from summary statistics

&
Pages 635-665 | Received 06 Mar 2017, Accepted 03 Aug 2017, Published online: 30 May 2018

References

  • D. Miller and M. Frenklach , Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics , Int. J. Chem. Kinetics 15 (1983), pp. 677–696.
  • J. Warnatz , Resolution of gas phase and surface combustion chemistry into elementary reactions , Symp. (Int.) Combust. 24 (1992), pp. 553–579.
  • M. Frenklach , H. Wang , and M.J. Rabinowitz , Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method – combustion of methane , Prog. Energy Combust. Sci. 18 (1992), pp. 47–73.
  • B. Phenix , J. Dinaro , M. Tatang , J. Tester , J. Howard , and G. McRae , Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , Combust. Flame 112 (1998), pp. 132–146.
  • M. Reagan , H. Najm , R. Ghanem , and O. Knio , Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection , Combust. Flame 132 (2003), pp. 545–555.
  • M. Reagan , H. Najm , B. Debusschere , O. Le Maître , O. Knio , and R. Ghanem , Spectral stochastic uncertainty quantification in chemical systems , Combust. Theory Model. 8 (2004), pp. 607–632.
  • M. Frenklach , A. Packard , P. Seiler , and R. Feeley , Collaborative data processing in developing predictive models of complex reaction systems , Int. J. Chem. Kinetics 36 (2004), pp. 57–66.
  • M. Reagan , H. Najm , P. Pébay , O. Knio , and R. Ghanem , Quantifying uncertainty in chemical systems modeling , Int. J. Chem. Kinetics 37 (2005), pp. 368–382.
  • O. Le Maître , H. Najm , P. Pébay , R. Ghanem , and O. Knio , Multi-resolution analysis scheme for uncertainty quantification in chemical systems , SIAM J. Sci. Comput. 29 (2007), pp. 864–889.
  • M. Frenklach , Transforming data into knowledge – process informatics for combustion chemistry , Proc. Combust. Inst. 31 (2007), pp. 125–140.
  • X. You , T. Russi , A. Packard , and M. Frenklach , Optimization of combustion kinetic models on a feasible set , Proc. Combust. Inst. 33 (2011), pp. 509–516.
  • T. Turányi , T. Nagy , I. Zsély , M. Cserháti , T. Varga , B. Szabó , I. Sedyó , P. Kiss , A. Zempléni , and H. Curran , Determination of rate parameters based on both direct and indirect measurements , Int. J. Chem. Kinetics 44 (2012), pp. 284–302.
  • T. Nagy and T. Turányi , Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models , Reliability Engrg & System Safety 107 (2012), pp. 29–34.
  • K. Braman , T. Oliver , and V. Raman , Bayesian analysis of syngas chemistry models , Combust. Theory Model. 17 (2013), pp. 858–887.
  • S.P. Sander , J. Abbatt , J.R. Barker , J.B. Burkholder , R.R. Friedl , D.M. Golden , R.E. Huie , C.E. Kolb , M.J. Kurylo , G.K. Moortgat , V.L. Orkin , and P.H. Wine , Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 17 , Tech. Rep. JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, CA, 2011. Available at https://jpldataeval.jpl.nasa.gov/pdf/JPL%2010-6%20Final%2015June2011.pdf .
  • D.A. Sheen and H. Wang , Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane , Combust. Flame 158 (2011), pp. 645–656.
  • D. Sheen , C. Rosado-Reyes , and W. Tsang , Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques , Proc. Combust. Inst. 34 (2013), pp. 527–536.
  • A. Tomlin , The role of sensitivity and uncertainty analysis in combustion modelling , Proc. Combust. Inst. 34 (2013), pp. 159–176.
  • J. Prager , H. Najm , K. Sargsyan , C. Safta , and W. Pitz , Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters , Combust. Flame 160 (2013), pp. 1583–1593.
  • É. Hébrard , A.S. Tomlin , R. Bounaceur , and F. Battin-Leclerc , Determining predictive uncertainties and global sensitivities for large parameter systems: A case study for n-butane oxidation , Proc. Combust. Inst. 35 (2015), pp. 607–616.
  • A.S. Tomlin , E. Agbro , V. Nevrlỳ , J. Dlabka , and M. Vašinek , Evaluation of combustion mechanisms using global uncertainty and sensitivity analyses: A case study for low-temperature dimethyl ether oxidation , Int. J. Chem. Kinetics 46 (2014), pp. 662–682.
  • H. Wang and D.A. Sheen , Combustion kinetic model uncertainty quantification, propagation and minimization , Prog. Energy Combust. Sci. 47 (2015), pp. 1–31.
  • L. Hakim , G. Lacaze , M. Khalil , H. Najm , and J. Oefelein , Modeling auto-ignition transients in reacting diesel jets , J. Eng. Gas Turbines Power 138 (2016), 112806, 8pp. Paper No. GTP-16-1054. Available at https://doi.org/10.1115/1.4033502 .
  • M. Khalil , K. Chowdhary , C. Safta , K. Sargsyan , and H. Najm , Inference of reaction rate parameters based on summary statistics from experiments , Proc. Combust. Inst. 36 (2017), pp. 699–708.
  • A. Gelman , J.B. Carlin , H.S. Stern , and D.B. Rubin , Bayesian Data Analysis , 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2004.
  • D.S. Sivia and J. Skilling , Data Analysis: A Bayesian Tutorial , 2nd ed., Oxford University Press, New York, 2006.
  • J. Kaipio and E. Somersalo , Statistical and Computational Inverse Problems , Springer Science + Business Media, New York, 2005.
  • J. Berger and L. Pericchi , The intrinsic Bayes factor for model selection and prediction , J. Amer. Statist. Assoc. 91 (1996), pp. 109–122.
  • J.N. Kapur , Maximum-Entropy Models in Science and Engineering , Wiley Eastern, New Delhi, 1989.
  • T. Loredo , From Laplace to supernova SN 1987A: Bayesian Inference in astrophysics , in Maximum Entropy and Bayesian Methods , P. Fougére , ed., Kluwer Academic, Dordrecht, The Netherlands, 1990, pp. 81–142.
  • E. Jaynes , Probability Theory: The Logic of Science , G.L. Bretthorst , ed., Cambridge University Press, Cambridge, UK, 2003.
  • A. Caticha and R. Preuss , Maximum entropy and Bayesian data analysis: Entropic prior distributions , Phys. Rev. E 70 (2004), Article ID 046127. Available at https://doi.org/10.1103/PhysRevE.70.046127 .
  • R. Berry , H. Najm , B. Debusschere , H. Adalsteinsson , and Y. Marzouk , Data-free inference of the joint distribution of uncertain model parameters , J. Comput. Phys. 231 (2012), pp. 2180–2198.
  • H. Najm , R. Berry , C. Safta , K. Sargsyan , and B. Debusschere , Data free inference of uncertain parameters in chemical models , Int. J. Uncertainty Quantification 4 (2014), pp. 111–132.
  • K. Chowdhary and H. Najm , Data free inference with processed data products , Statistics & Comput. 26 (2016), pp. 149–169.
  • D. Masten , R. Hanson , and C. Bowman , Shock tube study of the reaction H + O2 → OH + O using OH laser absorption , J. Phys. Chem. 94 (1990), pp. 7119–7128.
  • D. Masten , A shock tube study of reactions in the H2/O2 mechanism , Ph.D. diss., Stanford University, Stanford, CA, 1990.
  • S.D. Cohen and A.C. Hindmarsh , CVODE, a stiff/nonstiff ODE solver in C , Comput. Phys. 10 (1996), pp. 138–143.
  • A. Hindmarsh , P. Brown , K. Grant , S. Lee , R. Serban , D. Shumaker , and C. Woodward , Sundials: Suite of nonlinear and differential/algebraic equation solvers , ACM Trans. Math. Softw. 31 (2005), pp. 363–396.
  • C. Safta , H. Najm , and O. Knio , TChem – a software toolkit for the analysis of complex kinetic models , Sandia Report SAND2011-3282 (2011), Sandia National Laboratories, Livermore, USA. Available at http://www.sandia.gov/tchem/tchem_files/sandtchem.pdf .
  • N. Wiener , The homogeneous chaos , Amer. J. Math. 60 (1938), pp. 897–936.
  • R. Ghanem and P. Spanos , Stochastic Finite Elements: A Spectral Approach , Springer Verlag, New York, 1991.
  • D. Xiu and G. Karniadakis , The Wiener–Askey polynomial chaos for stochastic differential equations , SIAM J. Sci. Comput. 24 (2002), pp. 619–644.
  • B. Debusschere , H. Najm , P. Pébay , O. Knio , R. Ghanem , and O. Le Maître , Numerical challenges in the use of polynomial chaos representations for stochastic processes , SIAM J. Sci. Comput. 26 (2004), pp. 698–719.
  • H. Najm , Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics , Annu. Rev. Fluid Mech. 41 (2009), pp. 35–52.
  • O.L. Maître and O. Knio , Spectral Methods for Uncertainty Quantification – with Applications to Computational Fluid Dynamics , 1st ed., Springer series on Scientific Computation, Springer Science + Business Media, Dordrecht, The Netherlands, 2010.
  • G.A.J. Baker and P. Graves-Morris , Padé Approximants , Cambridge University Press, Cambridge, UK, 1996.
  • S. Caticha and A. Giffin , Updating probabilities , AIP Conf. Proc. 872 (2006), pp. 31–42. Available at http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2423258 .
  • M. Beaumont , W. Zhang , and D.J. Balding , Approximate Bayesian Computation in population genetics , Genetics 162 (2002), pp. 2025–2035.
  • C. Genest , A characterization theorem for externally Bayesian groups , Ann. Statist. 12 (1984), pp. 1100–1105. Available at https://doi.org/10.1214/aos/1176346726 .
  • C. Genest and J. Zidek , Combining probability distributions: A critique and an annotated bibliography , Statist. Sci. 1 (1986), p. 114–135.
  • M. Abramowitz and I. Stegun , Handbook of Mathematical Functions , Dover, New York, 1970.
  • C.P. Robert and G. Casella , Monte Carlo Statistical Methods , Springer-Verlag, New York, 1999.
  • L. Tierney and J.B. Kadane , Accurate approximations for posterior moments and marginal densities , J. Amer. Statist. Assoc. 81 (1986), pp. 82–86.
  • J.C. Naylor and A.F.M. Smith , Applications of a method for the efficient computation of posterior distributions , Appl. Statist. 31 (1982), pp. 639–643.
  • Q. Liu and D.A. Pierce , A note on Gauss–Hermite quadrature , Biometrika 81 (1994), pp. 624–629. Available at https://doi.org/10.2307/2337136 .
  • J. Liu , Monte Carlo Strategies in Scientific Computing , Springer series in Statistics, Springer-Verlag, New York, 2004.
  • O. Ernst , A. Mugler , H.J. Starkloff , and E. Ullmann , On the convergence of generalized polynomial chaos expansions , ESAIM: Math. Model. Numer. Anal. 46 (2012), pp. 317–339.
  • Y.M. Marzouk , H.N. Najm , and L.A. Rahn , Stochastic spectral methods for efficient Bayesian solution of inverse problems , J. Comput. Phys. 224 (2007), pp. 560–586.
  • O. Le Maître , H. Najm , R. Ghanem , and O. Knio , Multi-resolution analysis of Wiener-type uncertainty propagation schemes , J. Comput. Phys. 197 (2004), pp. 502–531.
  • O. Le Maître , R. Ghanem , O. Knio , and H. Najm , Uncertainty propagation using Wiener-Haar expansions , J. Comput. Phys. 197 (2004), pp. 28–57.
  • X. Wan and G. Karniadakis , Multi-element generalized polynomial chaos for arbitrary probability measures , SIAM J. Sci. Comput. 28 (2006), pp. 901–928.
  • J. Hesthaven , S. Kaber , and L. Lurati , Padé-Legendre interpolants for Gibbs reconstruction , Journal of Scientific Computing 28 (2006), pp. 337–359.
  • T. Chantrasmi , A. Doostan , and G. Iaccarino , Padé–Legendre approximants for uncertainty analysis with discontinuous response surfaces , J. Comput. Phys. 228 (2009), pp. 7159–7180.
  • L. Emmel , S. Kaber , and Y. Maday , Padé–Jacobi filtering for spectral approximations of discontinuous solutions , Numer. Algorithms 33 (2003), pp. 251–264.
  • O. Le Maître and O. Knio , Spectral Methods for Uncertainty Quantification , Springer, New York, 2010.
  • J. Warnatz , Rate coefficients in the C/H/O system , in Combustion Chemistry , W.C. Gardiner Jr , ed., chap. 5, Springer-Verlag, New York, 1984, pp. 197–360.
  • M. Khalil , K. Chowdhary , C. Safta , K. Sargsyan , and H.N. Najm , Inference of reaction rate parameters based on summary statistics from experiments , Symp. (Int.) Combust. 36 (2016), pp. 699–708. Available at http://dx.doi.org/10.1016/j.proci.2016.08.058 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.