351
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effects of tortuosity and dispersion on porous combustion

Pages 1175-1194 | Received 19 Jul 2016, Accepted 27 Aug 2017, Published online: 22 Sep 2017

References

  • D.R. Hardesty and F.J. Weinberg, Burners producing large excess enthalpies, Combust. Sci. Tech. 8 (1974), pp. 201–214.
  • T. Takento and K. Sato, An excess enthalpy flame theory, Combust. Sci. Tech. 20 (1979), pp. 73–84.
  • Y. Kotani and T. Takeno, An experimental study on stability and combustion characteristics of an excess enthalpy flame, in Proceedings of the 19th Sym. (Int.) on Combustion, The Combustion Institute, 1982, pp. 1503–1509. Available at https://doi.org/https://doi.org/10.1016/S0082-0784(82)80327-5
  • S. Wood and A.T. Harris, Porous burners for lean-burn applications, Prog. Energy Combust. Sci. 34 (2008), pp. 667–684.
  • M. Abdul Mujeebu, M. Zulkifly Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, Applications of porous media combustion technology – A review, Appl. Energy 86 (2009), pp. 1365–1375.
  • R. Viskanta, Modeling of combustion porous inert media, Spec. Top. Rev. Porous Media: An Int. J. 2 (2011), pp. 181–204.
  • M. Abdul Mujeebu, M. Zulkifly Abdullah, A.A. Mohamad, and M.Z. Abu Bakar, Trends in modeling of porous media combustion, Prog. Energy Combust. Sci. 36 (2010), pp. 627–650.
  • M.H. Akbari, P. Riahi, and R. Roohi, Lean flammability limits for stable performance with a porous burner, Appl. Energy 86 (2009), pp. 2635–2643.
  • M.H. Akbari and P. Riahi, Investigation of the structural and reactants properties on the thermal characteristics of a premixed porous burner, Appl. Energy 87 (2010), pp. 1433–1440.
  • S.B. Sathe, R.E. Peck, and T. W. Tong, A numerical analysis of heat transfer and combustion in porous radiant burners, Int. Heat Mass Transf. 33(6) (1990), pp. 1331–1338.
  • S.B. Sathe, M.R. Kulkarni, R.E. Peck, and T.W. Tong, An experimental and theoretical study of porous radiant burner performance, in Twenty-Third Symposium (International) on Combustion/The Combustion Institute, University of Orléans, France, 1990, pp. 1011–1018. Available at https://doi.org/https://doi.org/10.1016/S0082-0784(06)80358-9
  • D.J. Diamantis, E. Mastorakos, and D.A. Goussis, Simulations of premixed combustion in porous media, Combust. Theory Model. 6 (2002), pp. 384–411.
  • A.J. Barra, G. Diepvens, J.L. Ellzey, and M.R. Henneke, Numerical study of the effects of material properties on flame stabilization in a porous burner, Combust. Flame 134 (2003), pp. 369–379.
  • A.J. Barra and J.L. Ellzey, Heat recirculation and heat transfer in porous burners, Combust. Flame 137 (2004), pp. 230–241.
  • M.T. Smucker and J.L. Ellzey, Computational and experimental study of a two-section porous burner, Combust. Sci. Tech. 176 (2004), pp. 1171–1189.
  • S. Panigrahy and S.C. Mishra, Analysis of combustion of liquefied petroleum gas in a porous radiant burner, Intl. J. Heat Mass Transf. 95 (2016), pp. 488–498.
  • J.A. van Oijen, F.A. Lammers, and L.P.H. de Goey, Modeling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Tech. 161 (2000), pp. 113–137.
  • J.A. van Oijen, F.A. Lammers, and L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame 127 (2001), pp. 2124–2134.
  • K. Yamamoto, N. Takada, and M. Misawa, Combustion simulation with Lattice Boltzmann method in a three-dimensional porous structure, Proc. Combust. Inst. 30 (2005), pp. 1509–1515.
  • K. Yamamoto and N. Takada, LB simulation on soot combustion in porous media, Phys. A 362 (2006), pp. 111–117.
  • M.-F. Liou and I. Greber, Mesh-based microstructure representation algorithm for simulating pore-scale transport phenomena in porous media, in Computational Fluid Dynamics, H. Deconinck and E. Dick, eds., Springer, Berlin Heidelberg, 2006, pp. 601–606. ISBN978-3-540-92778-5 (Print) 978-3-540-92779-2 (Online), Part 7.
  • M.-F. Liou and H. Kim, Pore scale simulation of combustion in porous media. in Computational Fluid Dynamics, H. Choi, H.G. Choi, and J.Y. Yoo, eds., Springer, Berlin Heidelberg, 2008, p. 363e74. Part 19, ISBN:978-3-642-01272-3 (Print), 978-3-642-01273-0 (Online ).
  • X. Fu, R. Viskanta, and J.P. Gore, Prediction of effective thermal conductivity of cellular ceramics, Int. Comm. Heat Mass Transf. 25 (1998), pp. 151–160.
  • J.M.P.Q. Delgado, Longitudinal and transverse dispersion in porous media, Trans. IChemE, Part A, Chem. Eng. Res. Des. 85 (2007), pp. 1245–1252.
  • J.M.P.Q. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf. 42 (2006), pp. 279–310.
  • P. Parthasarathy, P. Habisreuter, and N. Zarzalis, Evaluation of longitudinal dispersion coefficient in open-cell foams using transient direct pore level simulation, Chem. Eng. Sci. 90 (2013), pp. 242–249.
  • S. Zuercher, K. Pabst, and G. Schaub, Ceramic foams as structured catalyst inserts in gas-particle filters for gas reactions- Effect of back mixing, Appl. Catal. A: Gen. 357 (2009), pp. 85–92.
  • C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York, 1975.
  • M.W. Chase, Jr., C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, 3rd ed., Published by American Chemical Society, American Institute of Physics for the National Bureau of Standards, Washington, DC, Data 14, 1985.
  • A. Nakayama, K. Ando, C. Yang, Y. Sano, F. Kuwahara, and J. Liu, A study on interstitial heat transfer in consolidated and unconsolidated porous media, Heat Mass Transf. 45 (2009), pp. 1365–1372.
  • X. Fu, R. Viskanta, and J.P. Gore, Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics, Exp. Thermal Fluid Sci. 17 (1998), pp. 285–293.
  • M.D. Smooke, and V. Giovangigli, Formulation of the premixed and nonpremixed test problems, in Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Springer-Verlag, Berlin Heidelberg, 1991, pp. 1–28.
  • P.-F. Hsu and R.D. Matthews, The necessity of using detailed kinetics in models for premixed combustion within porous media, Combust. Flame 93 (1993), pp. 457–466.
  • P.F. Hsu and J.R. Howell, Measurements of thermal conductivity and optical properties of partially stabilized zirconia, Exp. Heat Transf. 5 (1992), pp. 219.
  • M.F. Modest, Radiative Heat Transfer, 2nd ed., Academic Press, San Diego, CA, 2003, pp. 498.
  • C.M. Vagelopoulos, F.N. Egolfopoulos, and C.K. Law, Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, Proc. Combust. Inst. 25 (1994), pp. 1341–1347.
  • C.M. Vagelopoulos and F.N. Egolfopoulos, Direct experimental determination of laminar flame speed, Proc. Combust. Inst. 27 (1998), pp. 513–519.
  • W. Kingergy, H. Bowen, and D. Uhlmann, Introduction to Ceramics, John Wiley, New York, 1975.
  • V. Khanna, Experimental analysis of radiation for methane combustion with a porous medium burner, M.S. Thesis, Univ. of Texas, Austin, 1992.
  • S.I. Yang and M.S. Wu, Properties of premixed hydrogen/propane/air flame in ceramic granular beds, Int. J. Hydrogen Energy 39 (2014), pp. 17347–17357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.