217
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of finite disturbances interacting with laminar premixed flames

& ORCID Icon
Pages 812-833 | Received 19 Oct 2017, Accepted 14 Mar 2018, Published online: 25 May 2018

References

  • E.S. Oran and V.N. Gamezo , Origins of the deflagration-to-detonation transition in gas-phase combustion , Combust. Flame 148 (2007), pp. 4–47.
  • S. Eidelman , W. Grossmann , and I. Lottati , Review of propulsion applications and numerical simulations of the pulsed detonation engine concept , J. Propulsion & Power 7 (1991), pp. 857–865.
  • D.E. Paxson , Performance evaluation method for ideal airbreathing pulse detonation engines , J. Propulsion & Power 20 (2004), pp. 945–950.
  • J. Yang , T. Kubota , and E.E. Zukoski , Applications of shock-induced mixing to supersonic combustion , AIAA J. 31 (1993), pp. 854–862.
  • G. D. Roy , S.M. Frolov , A. A. Borisov , and D. Netzer , Pulse detonation propulsion: Challenges, current status, and future perspective , Prog. Energy Combust. Sci. 30 (2004), pp. 545–672.
  • J.D. Regele , D.R. Kassoy , M. Aslani , and O.V. Vasilyev , Evolution of detonation formation initiated by a spatially distributed, transient energy source , J. Fluid Mech. 802 (2016), pp. 305–332.
  • R.D. Richtmyer , Taylor instability in shock acceleration of compressible fluids , Communications on Pure and Applied Mathematics 13 (1960), pp. 297–319.
  • E.E. Meshkov , Instability of the interface of two gases accelerated by a shock wave , Fluid Dynam. 4 (1969), pp. 101–104. Available at https://doi.org/10.1007/BF01015969.
  • Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I , Phys. Rep. 723–725 (2017). Available at https://doi.org/10.1016/j.physrep.2017.07.005.
  • Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II , Phys. Rep. 723–725 (2017). Available at https://doi.org/10.1016/j.physrep.2017.07.008.
  • M. Brouillette , The Richtmyer–Meshkov instability , Annu. Rev. Fluid Mech. 34 (2002), pp. 445–468. Available at https://doi.org/10.1146/annurev.fluid.34.090101.162238.
  • K. Nishihara , J. Wouchuk , C. Matsuoka , R. Ishizaki , and V. Zhakhovsky , Richtmyer–Meshkov instability: Theory of linear and nonlinear evolution , Philos. Trans. Roy. Soc. A: Math. Phys. & Eng. Sci. 368 (2010), pp. 1769–1807.
  • G.H. Markstein , Nonsteady flame propagation, Technical Report , Pergamon Press, 1964.
  • A.M. Khokhlov and E.S. Oran , Numerical simulation of detonation initiation in a flame brush: The role of hot spots , Combust. Flame 119 (1999), pp. 400–416.
  • A.M. Khokhlov , E.S. Oran , and G.O. Thomas , Numerical simulation of deflagration-to-detonation transition: The role of shock–flame interactions in turbulent flames , Combust. Flame 117 (1999), pp. 323–339.
  • V.N. Gamezo , A.M. Khokhlov , and E.S. Oran , The influence of shock bifurcations on shock–flame interactions and DDT , Combust. Flame 126 (2001), pp. 1810–1826.
  • E.S. Oran and A.M. Khokhlov , Deflagrations, hot spots, and the transition to detonation , Philos. Trans. Roy. Soc. A: Math. Phys. & Eng. Sci. 357 (1999), pp. 3539–3551.
  • H. Jiang , G. Dong , X. Chen , and B. Li , A parameterization of the Richtmyer–Meshkov instability on a premixed flame interface induced by the successive passages of shock waves , Combust. Flame 169 (2016), pp. 229–241.
  • H. Jiang , G. Dong , X. Chen , and J.T. Wu , Numerical simulations of the process of multiple shock–flame interactions , Acta Mech. Sinica 32 (2016), pp. 659–669. Available at https://doi.org/10.1007/s10409-015-0552-0.
  • F. Diegelmann , S. Hickel , and N.A. Adams , Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction , Combust. Flame 174 (2016), pp. 85–99.
  • L. Massa and P. Jha , Linear analysis of the Richtmyer–Meshkov instability in shock–flame interactions , Phys. Fluids 24 (2012), Article ID 056101. Available at https://doi.org/10.1063/1.4719153.
  • V. Kilchyk , R. Nalim , and C. Merkle , Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves , Combust. Flame 158 (2011), pp. 1140–1148.
  • V.N. Gamezo , T. Ogawa , and E.S. Oran , Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing , Combust. Flame 155 (2008), pp. 302–315.
  • D. A. Kessler , V. N. Gamezo , and E.S. Oran , Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems , Combust. Flame 157 (2010), pp. 2063–2077.
  • A.Y. Poludnenko and E.S. Oran , The interaction of high-speed turbulence with flames: Global properties and internal flame structure , Combust. Flame 157 (2010), pp. 995–1011.
  • K. Mazaheri , Y. Mahmoudi , and M.I. Radulescu , Diffusion and hydrodynamic instabilities in gaseous detonations , Combust. Flame 159 (2012), pp. 2138–2154.
  • Y. Mahmoudi and K. Mazaheri , High resolution numerical simulation of the structure of 2-D gaseous detonations , Proc. Combust. Inst. 33 (2011), pp. 2187–2194.
  • Y. Mahmoudi , N. Karimi , R. Deiterding , and S. Emami , Hydrodynamic instabilities in gaseous detonations: Comparison of Euler, Navier–Stokes, and large-eddy simulation , J. Propulsion & Power 30 (2014), pp. 384–396.
  • A. Nejadmalayeri , A. Vezolainen , E. Brown-Dymkoski , and O.V. Vasilyev , Parallel adaptive wavelet collocation method for PDES , J. Comput. Phys. 298 (2015), pp. 237–253.
  • D.C. Haworth and T. J. Poinsot , Numerical simulations of Lewis number effects in turbulent premixed flames , J. Fluid Mech. 244 (1992), pp. 405–436.
  • A.M. Khokhlov , E.S. Oran , A.Y. Chtchelkanova , and J.C. Wheeler , Interaction of a shock with a sinusoidally perturbed flame , Combust. Flame 117 (1999), pp. 99–116.
  • T. Ogawa , V.N. Gamezo , and E.S. Oran , Flame acceleration and transition to detonation in an array of square obstacles , J. Loss Prevent. Proc. Ind. 26 (2013), pp. 355–362.
  • O.V. Vasilyev and C. Bowman , Second-generation wavelet collocation method for the solution of partial differential equations , J. Comput. Phys. 165 (2000), pp. 660–693.
  • J. D. Regele and O. V Vasilyev , An adaptive wavelet-collocation method for shock computations , Int. J. Comput. Fluid Dynam. 23 (2009), pp. 503–518.
  • S.J. Reckinger , D. Livescu , and O.V. Vasilyev , Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability , J. Comput. Phys. 313 (2016), pp. 181–208.
  • S.R. Turns , An Introduction to Combustion: Concepts and Applications , McGraw-Hill series in Mechanical Engineering (Vol. 499), McGraw-Hill, New York, 1996.
  • J. Kurylo , H. A. Dwyer , and A.K. Oppenheim , Numerical analysis of flow fields generated by accelerating flames , Ph.D. diss., University of California, Berkeley, 1978.
  • V. Bychkov , M. Modestov , and C.K. Law , Combustion phenomena in modern physics: I. Inertial confinement fusion , Prog. Energy Combust. Sci. 47 (2015), pp. 32–59.
  • P. Movahed and E. Johnsen , A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability , J. Comput. Phys. 239 (2013), pp. 166–186.
  • V. Kilchyk , R. Nalim , and C. Merkle , Scaling interface length increase rates in Richtmyer–Meshkov instabilities , J. Fluids Engng 135 (2013), Article ID 031203. Available at https://doi.org/10.1115/1.4023191.
  • H. de Frahan and T. Marc , Numerical simulations of shock and rarefaction waves interacting with interfaces in compressible multiphase flows , University of Michigan, Ann Arbor, 2016. Available at http://hdl.handle.net/2027.42/133458.
  • Y. Ju , A. Shimano , and O. Inoue , Vorticity generation and flame distortion induced by shock flame interaction , Symp. (Int.) Combust. 27 (1998), pp. 735–741.
  • A.A. Gowardhan , F.F. Grinstein , and A.J. Wachtor , Three dimensional simulations of Richtmyer–Meshkov instabilities in shock-tube experiments , in Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition , 4–7 January 2010, Orlando, Fl, AIAA Paper 1075. Available at https://doi.org/10.2514/6.2010-1075.
  • S.M. Candel , Combustion instabilities coupled by pressure waves and their active control , Symp. (Int.) Combust. 24 (1992), pp. 1277–1296.
  • S. Candel , Combustion dynamics and control: Progress and challenges , Proc. Combust. Inst. 29 (2002), pp. 1–28.
  • T. Lieuwen , Modeling premixed combustion–acoustic wave interactions: A review , J. Propulsion & Power 19 (2003), pp. 765–781.
  • P. Clavin , Dynamic behavior of premixed flame fronts in laminar and turbulent flows , Prog. Energy Combust. Sci. 11 (1985), pp. 1–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.