334
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Issues arising in the construction of QSSA mechanisms: the case of reduced n-heptane/air models for premixed flames

ORCID Icon, &
Pages 1049-1083 | Received 07 Dec 2017, Accepted 21 Apr 2018, Published online: 01 Jun 2018

References

  • A. Patel, S. Kong, and R. Reitz, Development and validation of a reduced reaction mechanism for HCCI engine simulations, SAE Technical Paper 2004-01-0558, 2004. Available at https://doi.org/10.4271/2004-01-0558.
  • C.M. Coats and A. Williams, Investigation of the ignition and combustion of n-heptane–oxygen mixtures, Proc. Combust. Inst. 17 (1979), pp. 611–621.
  • J. Warnatz, Chemistry of high temperature combustion of alkanes up to octane, Proc. Combust. Inst. 20 (1985), pp. 845–856.
  • C.K. Westbrook, J. Warnatz, and W.J. Pitz, A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range, Proc. Combust. Inst. 22 (1989), pp. 893–901.
  • C. Chevalier, P. Louessard, U.C. Müller, and J. Warnatz, A detailed low-temperature reaction mechanism of n-heptane auto-ignition, in Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 90), 3–5 September 1990, Kyoto, Japan, pp. 93–97. Available at https://www.jsme.or.jp/esd/COMODIA-Procs/Data/002/C90_P093.pdf.
  • M. Bui-Pham and K. Seshadri, Comparison between experimental measurements and numerical calculations of the structure of heptane–air diffusion flames, Combust. Sci. Technol. 79 (1991), pp. 293–310.
  • N. Darabiha, F. Lacas, J.C. Rolon, and S. Candel, Laminar counterflow spray diffusion flames: A comparison between experimental results and complex chemistry calculations, Combust. Flame 95 (1993), pp. 261–275.
  • N. Peters, Turbulente Brenngeschwindigkeit, Abschlußbericht zum DFG Forschungsvorhaben Pe 241/9-2, Institut für Technische Mechanik, RWTH-Aachen, d-52056 Aachen, Germany, August 1994. Available at https://www.itv.rwth-aachen.de/fileadmin/Downloads/Berichte/DFG-Abschlussbericht.pdf.
  • R.P. Lindstedt and L.Q. Maurice, Detailed kinetic modelling of n-heptane combustion, Combust. Sci. Technol. 107 (1995), pp. 317–353.
  • M. Nehse, J. Warnatz, and C. Chevalier, Kinetic modeling of the oxidation of large aliphatic hydrocarbons, Proc. Combust. Inst. 26 (1996), pp. 773–780.
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of n-heptane oxidation, Combust. Flame 114 (1998), pp. 149–177.
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combust. Flame 129 (2002), pp. 253–280.
  • M. Mehl, W.J. Pitz, C.K. Westbrook, and H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011), pp. 193–200.
  • S.M. Sarathy, C.K. Westbrook, M. Mehl, W.J. Pitz, C. Togbe, P. Dagaut, H. Wang, M.A. Oehlschlaeger, U. Niemann, K. Seshadri, P.S. Veloo, C. Ji, F.N. Egolfopoulos, and T. Lu, Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20, Combust. Flame 158 (2011), pp. 2338–2357.
  • E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli, Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Prog. Energy Combust. Sci. 27 (2001), pp. 99–139.
  • P. Pepiot-Desjardins and H. Pitsch, An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms, Combust. Theory Model. 12 (2008), pp. 1089–1108.
  • T. Lu and C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy Combust. Sci. 35 (2009), pp. 192–215.
  • , D.A. Goussis and U. Maas, T. Echekki and E. Mastorakos, Model reduction for combustion chemistry, in Turbulent Combustion Modeling: Advances, New Trends and Perspectives eds., Vol. 95 of the series Fluid Mechanics and its Applications, Springer, Dordrecht, The Nethherlands, 2011, pp. 193–220. Available at http://doi.org/10.1007/978-94-007-0412-1_9.
  • D.A. Goussis, Quasi steady state and partial equilibrium approximations: Their relation and their validity, Combust. Theory Model. 16 (2012), pp. 869–926.
  • , T. Løvås, V. Patel, Model reduction techniques for chemical mechanisms, in Chemical Kinetics ed., InTech, Croatia, 2012, pp. 79–114.
  • , U. Maas and A. Tomlin, F. Battin-Leclerc, J.M. Simmie, and E. Blurock, Time-scale splitting-based mechanism reduction, in Cleaner Combustion eds., Green Energy and Technology, Springer, London, 2013, pp. 467–484.
  • , A. Tomlin and T. Turányi, F. Battin-Leclerc, J.M. Simmie, and E. Blurock, Mechanism reduction to skeletal form and species lumping, in Cleaner Combustion eds., Green Energy and Technology, Springer, London, 2013, pp. 447–466.
  • T. Turányi and A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer, Berlin, 2014.
  • D.A. Goussis, Model reduction: When singular perturbation analysis simplifies to partial equilibrium approximation, Combust. Flame 162 (2015), pp. 1009–1018.
  • J.M. Card and F.A. Williams, Asymptotic analysis of the structure and extinction of spherically symmetrical n-heptane diffusion flames, Combust. Sci. Technol. 84 (1992), pp. 91–119.
  • K. Seshadri, M. Bollig, and N. Peters, Numerical and asymptotic studies of the structure of stoichiometric and lean premixed heptane flames, Combust. Flame 108 (1997), pp. 518–536.
  • H. Pitsch and N. Peters, Investigation of the ignition process of sprays under diesel engine conditions using reduced n-heptane chemistry, SAE Technical Paper 982464, 1998. Available at https://doi.org/10.4271/982464.
  • V.I. Golovitchev,, N. Nordin, R. Jarnicki, J. Chomiak, 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model, SAE Technical Paper, Chalmers University of Technology, Göteborg, Sweden, 2000. Available at http://www.tfd.chalmers.se/valeri/mech.html.
  • R. Seiser, H. Pitsch, K. Seshadri, W.J. Pitz, and H.J. Curran, Extinction and autoignition of n-heptane in counterflow configuration, Proc. Combust. Inst. 28 (2000), pp. 2029–2037. Available at http://web.stanford.edu/group/pitsch/publication/SeiserProcCombInst_28.pdf.
  • N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combust. Flame 128 (2002), pp. 38–59.
  • S. Tanaka, F. Ayala, and J.C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame 133 (2003), pp. 467–481.
  • S. Liu, J.C. Hewsona, J.H. Chena, and H. Pitsch, Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow, Combust. Flame 137 (2004), pp. 320–339.
  • T. Lu and C.K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane, Combust. Flame 144 (2006), pp. 24–36.
  • F. Maroteaux and L. Noel, Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling, Combust. Flame 146 (2006), pp. 246–267.
  • F. Tao, R.D. Reitz, and D.E. Foster, Revisit of diesel reference fuel (n-heptane) mechanism applied to multidimensional diesel ignition and combustion simulations, 17th International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, Detroit, MI, 2007.
  • A. Saylam, M. Ribaucour, W.J. Pitz, and R. Minetti, Reduction of large detailed chemical kinetic mechanisms for autoignition using joint analyses of reaction rates and sensitivities, Int. J. Chem. Kinetics 39 (2007), pp. 181–196. Available at https://doi.org/10.1002/kin.20232.
  • M. Valorani, F. Creta, F. Donato, H.N. Najmb, and D.A. Goussis, Skeletal mechanism generation and analysis for n-heptane with CSP, Proc. Combust. Inst. 31 (2007), pp. 483–490.
  • J. Prager, H.N. Najm, M. Valorani, and D.A. Goussis, Skeletal mechanism generation with CSP and validation for premixed n-heptane flames, Proc. Combust. Inst. 32 (2009), pp. 509–517.
  • C.P. Zhao, S.Q. Chen, Y.L. Li, Q. Sun, and C.L. Song, Reduction of a detailed chemical kinetics model of n-heptane combustion and its validity analysis, Chinese Society for Internal Combustion Engines 26 (2008), pp. 346–352. Available at https://www.researchgate.net/publication/290299377_Reduction_of_a_detailed_chemical_kinetics_model_of_n-heptane_combustion_and_its_validity_analysis.
  • B. Zhong and J. Xi, Reduced kinetic mechanism of n-heptane oxidation in modeling polycyclic aromatic hydrocarbon formation in opposed-flow diffusion flames, Front. Energy Power Eng. China 2 (2008), pp. 326–332.
  • T. Zeuch, G. Moreac, S.S. Ahmed, and F. Mauss, A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction, Combust. Flame 155 (2008), pp. 651–674.
  • T. Lu and C.K. Law, Strategies for mechanism reduction for large hydrocarbons: n-heptane, Combust. Flame 154 (2008), pp. 153–163.
  • K.J. Hughes, M. Fairweather, J.F. Griffiths, R. Porter, and A.S. Tomlin, The application of the QSSA via reaction lumping for the reduction of complex hydrocarbon oxidation mechanisms, Proc. Combust. Inst. 32 (2009), pp. 543–551.
  • Y. Jiang and R. Qiu, Constructions of skeletal and global reduced mechanisms for n-heptane complex chemistry, Chem. J. Chinese Universities 31 (2010), pp. 312–319.
  • K.E. Niemeyer, C.J. Sung, and M.P. Raju, Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis, Combust. Flame 157 (2010), pp. 1760–1770.
  • Y. Shi, H.W. Ge, J.L. Brakora, and R.D. Reitz, Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods with error control, Energy & Fuels 24 (2010), pp. 1646–1654.
  • W. Sun, Z. Chen, X. Gou, and Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame 157 (2010), pp. 1298–1307.
  • W. Zeng, H.A. Ma, and M.Z. Xie, A reduced mechanism of PAHs formation in n-heptane/air partially premixed combustion, J. Combust. Sci. Technol. 17 (2011), pp. 313–320.
  • M. Raju, M. Wang, P.K. Senecal, S. Som, and D.E. Longman, A reduced diesel surrogate mechanism for compression ignition engine applications, in Proceedings of the ASME Internal Combustion Engine Division Fall Technical Conference (ICEF2012), 23–26 September 2012, Vancouver, BC, Canada, pp. 711–722. Available at https://doi.org/10.1115/ICEF2012-92045.
  • K. Bahlouli, R.K. Saray, and U. Atikol, Development of a reduced mechanism for n-heptane fuel in HCCI combustion engines by applying combined reduction methods, Energy & Fuels 26 (2012), pp. 3244–3256.
  • H. Xu, C. Yao, and G. Xu, Chemical kinetic mechanism and a skeletal model for oxidation of n-heptane/methanol fuel blends, Fuel 93 (2012), pp. 625–631.
  • H.L. Tsai and J.Y. Chen, Skeletal and reduced chemistry of n-heptane based on recent LLNL detailed mechanism and their applications to simulations of IQT, in Proceedings of the 9th Asia-Pacific Conference on Combustion (ASPACC 2013), 19–22 May 2013, Gyeongju-si, South Korea.
  • H.L. Tsai, J.Y. Chen, and G. Chin, Validation of a newly developed n-heptane reduced chemistry and its application to simulations of ignition quality tester, diesel, and HCCI combustion, J. Engng Gas Turbines Power 136 (2014), Article ID 121505. Available at https://doi.org/10.1115/1.4027891.
  • A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and reduction of detailed kinetic schemes: An effective coupling, Ind. Engng Chem. Res. 53 (2013), pp. 9004–9016.
  • B. Akih-Kumgeh and J.M. Bergthorson, Skeletal chemical kinetic mechanisms for syngas, methyl butanoate, n-heptane, and n-decane, Energy & Fuels 27 (2013), pp. 2316–2326.
  • K. Zhang, L. Zheng, J. Wang, and Z. Wang, Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism, Applied Energy 105 (2013), pp. 223–228.
  • J.J. Hernandez, J. Sanz-Argent, and E. Monedero-Villalba, A reduced chemical kinetic mechanism of a diesel fuel surrogate (n-heptane/toluene) for HCCI combustion modelling, Fuel 133 (2014), pp. 283–291.
  • K. Bahlouli, U. Atikol, K.R. Saray, and V. Mohammadi, A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine, Energy Conversion & Mgmt 79 (2014), pp. 85–96.
  • J.M. Card and F.A. Williams, Asymptotic analysis with reduced chemistry for the burning of n-heptane droplets, Combust. Flame 91 (1992), pp. 187–199.
  • H.K. Chelliah, M. Bui-Pham, K. Seshadri, and C.K. Law, Numerical description of the structure of counterflow heptane–air flames using detailed and reduced chemistry with comparison to experiments, Proc. Combust. Inst. 24 (1992), pp. 851–857.
  • U.C. Müller, N. Peters, and A. Lin̄án, Global kinetics for n-heptane ignition at high pressures, Symp. (Int.) Combust. 24 (1992), pp. 777–784. Available at https://doi.org/10.1016/S0082-0784(06)80095-0.
  • J.M. Card, Asymptotic analysis for the burning of n-heptane droplets using a four-step reduced mechanism, Combust. Flame 93 (1993), pp. 375–390.
  • M. Schreiber, A. Sadat Sakak, A. Lingens, and J.F. Griffiths, A reduced thermokinetic model for the autoignition of fuels with variable octane ratings, Proc. Combust. Inst. 25 (1994), pp. 933–940.
  • M. Bollig, H. Pitsch, J.C. Hewson, and K. Seshadri, Reduced n-heptane mechanism for non-premixed combustion with emphasis on pollutant-relevant intermediate species, Proc. Combust. Inst. 26 (1996), pp. 729–737.
  • C.J. Montgomery, M.A. Cremer, M.P. Heap, J.Y. Chen, C.K. Westbrook, and L.Q. Maurice, Reduced chemical kinetic mechanisms for hydrocarbon fuels, in 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 20–24 June 1999, Los Angeles, CA. Available at http://www.dtic.mil/get-tr-doc/pdf?AD=ADA447824.
  • S.E.D. Habik, S.A. El-Sherif, and P.C.D.L. Abata, Developed reduced reaction mechanisms for practical high hydrocarbon fuels, Combust. Sci. Technol. 148 (1999), pp. 93–133.
  • C.J. Montgomery, M.A. Cremer, J.Y. Chen, C.K. Westbrook, and L.Q. Maurice, Reduced chemical kinetic mechanisms for hydrocarbon fuels, J. Propulsion & Power 18 (2002), pp. 192–198.
  • W. Su and H. Huang, Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion, Fuel 84 (2005), pp. 1029–1040.
  • F. Maroteaux, L. Noel, and A. Ahmed, Numerical investigations on methods to control the rate of heat release of HCCI combustion using reduced mechanism of n-heptane with a multidimensional CFD code, Combust. Theory Model. 11 (2007), pp. 501–525.
  • W. Qian, S. Yang, B. Xiao, and J. Le, Development of reduced chemical reaction kinetic model for hydrocarbon fuel combustion, Chinese J. Theor. Appl. Mech. 39 (2007), pp. 37–44.
  • H. Machrafi, P. Guibert, S. Cavadias, and C. Morin, HCCI engine modeling and experimental investigations Part 1: The reduction, composition and validation of a n-heptane/iso-octane mechanism, Combust. Sci. Technol. 179 (2007), pp. 2561–2580.
  • T. Lu, C.K. Law, C.S. Yoo, and J.H. Chen, Dynamic stiffness removal for direct numerical simulations, Combust. Flame 156 (2009), pp. 1542–1551.
  • H.Z. Huang, H. Chen, Y.Q. Pei, and W.H. Su, Study and comparison of reduced chemical kinetic models of n-heptane oxidation for HCCI engine, Journal of Combust. Sci. Technol. 16 (2010), pp. 5–10. Available at https://www.researchgate.net/publication/291077589_Study_and_comparison_of_reduced_chemical_kinetic_models_of_n-heptane_oxidation_for_HCCI_engine.
  • C.S. Yoo, T. Lu, J.H. Chen, and C.K. Law, Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study, Combust. Flame 158 (2011), pp. 1727–1741.
  • C. Correa, H. Niemann, B. Schramm, and J. Warnatz, Reaction mechanism reduction for higher hydrocarbons by the ILDM method, Proc. Combust. Inst. 28 (2000), pp. 1607–1614.
  • J. Nafe and U. Maas, Hierarchical generation of ILDMs of higher hydrocarbons, Combust. Flame 135 (2003), pp. 17–26.
  • P.D. Kourdis and J. Bellan, Heavy-alkane oxidation kinetic-mechanism reduction using dominant dynamic variables, self similarity and chemistry tabulation, Combust. Flame 161 (2014), pp. 1196–1223.
  • T. Held, A. Marchese, and F. Dryer, A semi-empirical reaction mechanism for n-heptane oxidation and pyrolysis, Combust. Sci. Technol. 123 (1997), pp. 107–146.
  • H. Pitsch and N. Peters, A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects, Combust. Flame 114 (1998), pp. 26–40.
  • S. Davis and C. Law, Laminar flame speeds and oxidation kinetics of iso-octane–air and n-heptane–air flames, Symp. (Int.) Combust. 27 (1998), pp. 521–527.
  • A.E. Bakali, J.L. Delfau, and C. Vovelle, Experimental study of 1 atmosphere, rich, premixed n-heptane and iso-octane flames, Combust. Sci. Technol. 140 (1998), pp. 69–91.
  • R. Seiser, L. Truett, D. Trees, and K. Seshadri, Structure and extinction of non-premixed n-heptane flames, Symp. (Int.) Combust. 27 (1998), pp. 649–657.
  • F. İnal and S.M. Senkan, Effects of equivalence ratio on species and soot concentrations in premixed n-heptane flames, Combust. Flame 131 (2002), pp. 16–28.
  • Y. Huang, C. Sung, and J. Eng, Laminar flame speeds of primary reference fuels and reformer gas mixtures, Combust. Flame 139 (2004), pp. 239–251.
  • S. Naha and S.K. Aggarwal, Fuel effects on NOx emissions in partially premixed flames, Combust. Flame 139 (2004), pp. 90–105.
  • A. Holley, Y. Dong, M. Andac, and F. Egolfopoulos, Extinction of premixed flames of practical liquid fuels: Experiments and simulations, Combust. Flame 144 (2006), pp. 448–460.
  • P. Berta, S.K. Aggarwal, and I.K. Puri, An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species, Combust. Flame 145 (2006), pp. 740–764.
  • K. Kumar, J. Freeh, C. Sung, and Y. Huang, Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures, J. Propulsion & Power 23 (2007), pp. 428–436.
  • G. Blanquart, P. Pepiot-Desjardins, and H. Pitsch, Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame 156 (2009), pp. 588–607.
  • W. Sun, Z. Chen, X. Gou, and Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame 157 (2010), pp. 1298–1307.
  • J. Van Lipzig, E. Nilsson, L. De Goey, and A. Konnov, Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures, Fuel 90 (2011), pp. 2773–2781.
  • K. Luo, H. Pitsch, M. Pai, and O. Desjardins, Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor, Proc. Combust. Inst. 33 (2011), pp. 2143–2152.
  • F. Bisetti, G. Blanquart, M.E. Mueller, and H. Pitsch, On the formation and early evolution of soot in turbulent nonpremixed flames, Combust. Flame 159 (2012), pp. 317–335. Available at https://doi.org/10.1016/j.combustflame.2011.05.021.
  • W. Liang and C.K. Law, Extended flammability limits of n-heptane/air mixtures with cool flames, Combust. Flame 185 (2017), pp. 75–81.
  • B. Yenerdag, Y. Minamoto, K. Aoki, M. Shimura, Y. Nada, and M. Tanahashi, Flame–wall interactions of lean premixed flames under elevated, rising pressure conditions, Fuel 189 (2017), pp. 8–14.
  • H.N. Najm, M. Valorani, D.A. Goussis, and J. Prager, Analysis of methane–air edge flame structure, Combust. Theory Model. 14 (2010), pp. 257–294.
  • J. Prager, H.N. Najm, M. Valorani, and D.A. Goussis, Structure of n-heptane/air triple flames in partially-premixed mixing layers, Combust. Flame 158 (2011), pp. 2128–2144.
  • M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, and H.N. Najm, An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP, Combust. Flame 146 (2006), pp. 29–51.
  • T. Lu and C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (2005), pp. 1333–1341.
  • P. Pepiot-Desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame 154 (2008), pp. 67–81.
  • , N. Peters, B.L.R. Glowinski and R. Temam, Numerical and asymptotic analyses of systematically reduced reaction schemes for hydrocarbon flames, in Numerical Simulation of Combustion Phenomena eds., Vol. 241 of the series Lecture Notes in Physics, Springer-Verlag, Berlin, 1985, pp. 90–109.
  • N. Peters and R. Kee, The computation of stretched laminar methane–air diffusion flames using a reduced four-step mechanism, Combust. Flame 68 (1987), pp. 17–29.
  • N. Peters and F. Williams, The asymptotic structure of stoichiometric methane–air flames, Combust. Flame 68 (1987), pp. 185–207.
  • W. Jones and R. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame 73 (1988), pp. 233–249.
  • , N. Peters, M. Onofri and A. Tesei, Systematic reduction of flames kinetics: Principles and details, in Fluid Dynamical Aspects of Combustion Theory eds., Longman Scientific, New York, 1991, pp. 232–248.
  • M.D. Smooke, Reduced kinetic mechanisms and asymptotic approximations for methane–air flames, Vol. 384 of the series Lecture Notes in Physics, Springer Science, Berlin, 1991.
  • , N. Peters, M.O. Smooke, Reducing mechanisms, in Reduced kinetic mechanisms and asymptotic approximations for methane–air flames ed., Vol. 384 of the series Lecture Notes in Physics, Springer Science, Berlin, 1991, pp. 48–67.
  • N. Peters and B. Rogg, Reduced kinetic mechanisms for applications in combustion systems, Vol. 15 of the series Lecture Notes in Physics, Springer Science, Berlin, 1993.
  • F.A. Williams, Combustion Theory, Benjamin-Cummings, Boston, MA, 1995.
  • C.K. Law, Combustion Physics, Cambridge University Press, New York, 2006.
  • J. Warnatz, U. Maas, and R. Dibble, Combustion, Springer, Berlin, 2006.
  • J.Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations, Combust. Sci. Technol. 57 (1988), pp. 89–94.
  • D.A. Goussis, On the construction and use of reduced chemical kinetic mechanisms produced on the basis of given algebraic relations, J. Comput. Phys. 128 (1996), pp. 261–273.
  • A. Massias, D. Diamantis, E. Mastorakos, and D.A. Goussis, An algorithm for the construction of global reduced mechanisms with CSP data, Combust. Flame 117 (1999), pp. 685–708.
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264.
  • U. Maas and S.B. Pope, Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds, Proc. Combust. Inst. 24 (1992), pp. 103–112.
  • U. Maas and S.B. Pope, Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds, Proc. Combust. Inst. 25 (1994), pp. 1349–1356.
  • H. Hiemann and U.M.D. Schmidt, An efficient storage scheme for reduced chemical kinetics based on orthogonal polynomials, J. Engng Math. 31 (1997), pp. 131–142.
  • R.L.G.M. Eggels and L.P.H. de Goey, Mathematically reduced reaction mechanisms applied to adiabatic flat hydrogen/air flames, Combust. Flame 100 (1995), pp. 559–570.
  • P. Rouchon, A characterization of analytic ruled surfaces, Tech. Rep. 431, Centre Automatique et Systèmes, Ecole des Mines de Paris, France, 1993.
  • P. Duchene and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation techniques, Chem. Engng Sci. 52 (1996), pp. 4661–4672.
  • B.J. Debusschere, Y.M. Marzouk, H.N. Najm, B. Rhoads, D.A. Goussis, and M. Valorani, Computational singular perturbation with non-parametric tabulation of slow manifolds for time integration of stiff chemical kinetics, Combust. Theory Model. 16 (2012), pp. 173–198.
  • Y. Katsabanis, Reduced kinetics mechanisms in combustion simulations, Ph.D. thesis, University of Patras, Greece, 1996.
  • M. Valorani, H.N. Najm, and D.A. Goussis, CSP analysis of a transient flame–vortex interaction: Time scales and manifolds, Combust. Flame 134 (2003), pp. 35–53.
  • M. Hadjinicolaou and D.A. Goussis, Asymptotic solution of stiff PDEs with the CSP method: The reaction diffusion equation, SIAM J. Sci. Comput. 20 (1999), pp. 781–810.
  • D.A. Goussis, M. Valorani, F. Creta, and H.N. Najm, Reactive and reactive–diffusive time scales in stiff reaction–diffusion systems, Prog. Comput. Fluid Dynam. 5 (2005), pp. 316–326.
  • S. Lam, Reduced chemistry–diffusion coupling, Combust. Sci. Technol. 179 (2007), pp. 767–786.
  • T. Turanyi, A. Tomlin, and M. Pilling, On the error of the quasi-steady-state approximation, J. Phys. Chem. 97 (1993), pp. 163–172.
  • A.S. Tomlin, L. Whitehouse, R. Lowe, and M.J. Pilling, Low-dimensional manifolds in tropospheric chemical systems, Faraday Discuss. 120 (2002), pp. 125–146.
  • D.A. Goussis and S.H. Lam, A study of homogeneous methanol oxidation kinetics using CSP, Proc. Combust. Inst. 24 (1992), pp. 113–120. Available at https://doi.org/10.1016/S0082-0784(06)80018-4.
  • S.H. Lam and D.A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinetics 26 (1994), pp. 461–486.
  • T. Lu and C.K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combust. Flame 154 (2008), pp. 761–774.
  • A. Massias, D. Diamantis, E. Mastorakos, and D.A. Goussis, Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data, Combust. Theory Model. 3 (1999), pp. 233–257.
  • S.H. Lam and D.A. Coussis, Understanding complex chemical kinetics with computational singular perturbation, Proc. Combust. Inst. 22 (1989), pp. 931–941.
  • S.H. Lam, Using CSP to understand complex chemical kinetics, Combust. Sci. Technol. 89 (1993), pp. 375–404.
  • B. Rogg, RUN-1DL: A computer program for the simulation of one-dimensional chemically reacting flows, Department of Engineering, University of Cambridge, UK, 1991.
  • R.J. Kee, F.M. Rupley, and J.A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Tech. Rep. SAND-89-8009, Sandia National Laboratories, Livermore, CA, 1989. Available at https://www.osti.gov/biblio/5681118.
  • B. Rogg and F. Williams, Structures of wet CO flames with full and reduced kinetic mechanisms, Symp. (Int.) Combust. 22 (1989), pp. 1441–1451.
  • W. Wang and B. Rogg, Reduced kinetic mechanisms and their numerical treatment I: Wet CO flames, Combust. Flame 94 (1993), pp. 271–292.
  • L. Somers and L. de Goey, Analysis of a systematical reduction technique, Symp. (Int.) Combust. 25 (1994), pp. 957–963.
  • T. Lu and C. Law, Development of comprehensive detailed and reduced reaction mechanisms for combustion modeling, AIAA J. 41 (2003), pp. 1629–1646.
  • B. Abdellatif, A. Mohammed, A. El Houssine, and C. El Houssine, CH4/NOx reduced mechanisms used for modeling premixed combustion, Energy & Power Engng 4 (2012), Article ID: 20798. Available at https://doi.org/10.4236/epe.2012.44036.
  • T. Lu and C. Law, Systematic approach to obtain analytic solutions of quasi steady state species in reduced mechanisms, J. Phys. Chem. A 110 (2006), pp. 13202–13208.
  • T. Lu and C. Law, Strategies for mechanism reduction for large hydrocarbons: n-heptane, Combust. Flame 154 (2008), pp. 153–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.