1,075
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Multipoint radiation induced ignition of dust explosions: turbulent clustering of particles and increased transparency

, , &
Pages 1084-1102 | Received 13 Dec 2017, Accepted 12 Apr 2018, Published online: 01 Jun 2018

References

  • R.K. Eckhoff, Dust explosions in the process industries: Identification, assessment and control of dust hazards, 3rd ed. , Gulf Professional Publishing, Houston, TX, 2003.
  • R.K. Eckhoff, Understanding dust explosions. The role of powder science and technology, J. Loss Prevent. Proc. Ind. 22 (2009), pp. 105–116.
  • T. Abbasi and S. Abbasi, Dust explosions: Cases, causes, consequences, and control, J. Hazard. Mater. 140 (2007), pp. 7–44.
  • Z. Yuan, N. Khakzada, F. Khana, and P. Amyotte, Dust explosions: A threat to the process industries, Proc. Safety Environm. Protect. 98 (2015), pp. 57–71.
  • G. Atkinson and J. Hall, A review of large vapour cloud incidents, HSL Tech. Report MH15/80, Health and Safety Executive, Harpur Hill, Buxton, UK, 2016. https://primis.phmsa.dot.gov/meetings/MtgHome.mtg?mtg=111.
  • G. Atkinson, E. Cowpe, J. Halliday, and D. Painter, A review of very large vapour cloud explosions: Cloud formation and explosion severity, J. Loss Prev. Process Ind. 48 (2017), pp. 367–375.
  • S. Kundu, J. Zanganeh, and B. Moghtaderi, A review on understanding explosions from methane–air mixture, J. Loss Prev. Process Ind. 40 (2016), pp. 507–523.
  • S.R. Rockwell and A.S. Rangwala, Influence of coal dust on premixed turbulent methane–air flames, Combust. Flame 160 (2013), pp. 635–640.
  • M. Faraday and C. Lyell, Report on the explosion at the Haswell collieries, and on the means of preventing similar accidents, London/Edinburgh/Dublin Phil. Mag. & J. Sci. (now Combust. Sci. Technol.) 26 (1845), pp. 16–35. https://doi.org/10.1080/14786444508645066.
  • I. Herbert, The UK Buncefield incident: The view from a UK risk assessment engineer, J. Loss Prev. Process Ind. 23 (2010), pp. 913–920.
  • G. Atkinson and L. Cusco, Buncefield: A violent, episodic vapour cloud explosion, Proc. Safety Environm. Protection 89 (2011), pp. 360–370.
  • D. Bradley, G. Chamberlain, and D. Drysdale, Large vapour cloud explosions, with particular reference to that at Buncefield, Phil. Trans. R. Soc. A 370 (2012), pp. 544–566.
  • A. Pekalski, J. Puttock, and S. Chynoweth, Deflagration to detonation transition in a vapour cloud explosion in open but congested space: Large scale test, J. Loss Prev. Process Ind. 36 (2015), pp. 365–370.
  • E.S. Oran, Understanding explosions – from catastrophic accidents to the creation of the Universe, Proc. Combust. Inst. 35 (2015), pp. 1–35.
  • K. Shchelkin, Influence of the wall roughness on initiation and propagation of detonation in gases, Zh. Eksp. Teor. Fiz. 10 (1940), pp. 823–827.
  • K.I. Shchelkin and Y. K. Troshin, Gasdynamics of Combustion, Mono Book Corp., Baltimore, MD, 1965.
  • P. Urtiew and A.K. Oppenheim, Experimental observation of the transition to detonation in an explosive gas, Proc. Roy. Soc. A: Math. Phys. & Engng Sci. 295 (1966), pp. 13–28. https://doi.org/10.1098/rspa.1966.0223.
  • A. Oppenheim and R. Soloukhin, Experiments in gasdynamics of explosions, Annu. Rev. Fluid Mech. 5 (1973), pp. 31–58.
  • I. Moen, M. Donato, R. Knystautas, and J. Lee, Flame acceleration due to turbulence produced by obstacles, Combust. Flame 39 (1980), pp. 21–32.
  • G. Ciccarelli and S. Dorofeev, Flame acceleration and transition to detonation in ducts, Prog. Energy Combust. Sci. 34 (2008), pp. 499–550.
  • A. Teodorczyk, P. Drobniak, and A. Dabkowski, Fast turbulent deflagration and DDT of hydrogen–air mixtures in small obstructed channel, Int. J. Hydr. Energy 34 (2009), pp. 5887–5893.
  • G. Ciccarelli, C. Johansen, and M. Kellenberger, High-speed flames and DDT in very rough-walled channels, Combust. Flame 160 (2013), pp. 204–211.
  • C. Wang, X. Dong, J. Cao, and J. Ning, Experimental investigation of flame acceleration and deflagration-to-detonation transition characteristics using coal gas and air mixture, Combust. Sci. Technol. 187 (2015), pp. 1805–1820.
  • C. Wang, F. Huang, E.K. Addai, and X. Dong, Effect of concentration and obstacles on flame velocity and overpressure of methane–air mixture, J. Loss Prev. Process Ind. 43 (2016), pp. 302–310.
  • Y.B. Zel'dovich, On the theory of onset of detonation in gases, Zh. Tekh. Fiz 17 (1947), pp. 3–26.
  • M. Kuznetsov, V. Alekseev, I. Matsukov, and S. Dorofeev, DDT in a smooth tube filled with a hydrogen–oxygen mixture, Shock Waves 14 (2005), pp. 205–215. https://link.springer.com/article/10.1007/s00193-005-0265-6.
  • M. Liberman, M. Ivanov, A. Kiverin, M. Kuznetsov, A. Chukalovsky, and T. Rakhimova, Deflagration-to-detonation transition in highly reactive combustible mixtures, Acta Astronautica 67 (2010), pp. 688–701.
  • M. Ivanov, A. Kiverin, and M. Liberman, Hydrogen–oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model, Phys. Rev. E 83 (2011), Article ID 056313.
  • L. Kagan and G. Sivashinsky, Transition to detonation of an expanding spherical flame, Combust. Flame 175 (2017), pp. 307–311.
  • A. Koksharov, V. Bykov, L. Kagan, and G. Sivashinsky, Transition to detonation in an unconfined space, in: Proceedings of the 26th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), 30 July–4 August 2017, Boston, MA, 2017.
  • A.Y. Poludnenko, T.A. Gardiner, and E.S. Oran, Spontaneous transition of turbulent flames to detonations in unconfined media, Phys. Rev. Lett. 107 (2011), Article ID 054501.
  • B. Rochett, F. Collin-Bastiani, L. Gicquel, O. Vermorel, D. Veynante, and T. Poinsot, Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames. Combust. Flame 191 (2018), pp. 417–430.
  • O. Dounia, O. Vermorel, A. Misdariis, and T. Poinsot, Influence of kinetics on DDT simulations (2018), Combust. Flame, in press.
  • G. Nathan, P. Kalt, Z. Alwahabi, B. Dally, P. Medwell, and Q. Chan, Recent advances in the measurement of strongly radiating, turbulent reacting flows, Prog. Energy Combust. Sci. 38 (2012), pp. 41–61.
  • M. Hadjipanayis, F. Beyrau, R. Lindstedt, G. Atkinson, and L. Cusco, Thermal radiation from vapour cloud explosions, Proc. Safety Environm. Protection 94 (2015), pp. 517–527.
  • W. Gao, T. Mogi, J. Yu, X. Yan, J. Sun, and R. Dobashi, Flame propagation mechanisms in dust explosions, J. Loss Prev. Process Ind. 36 (2015), pp. 186–194.
  • P. Holbrow, S.J. Hawksworth, and A. Tyldesley, Thermal radiation from vented dust explosions, J. Loss Prev. Process Ind. 13 (2000), pp. 467–476.
  • T. Roberts, A. Gosse, and S. Hawksworth, Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels, Proc. Safety Environm. Protection 78 (2000), pp. 184–192.
  • M. Liberman, M. Ivanov, and A. Kiverin, Radiation heat transfer in particle-laden gaseous flame: Flame acceleration and triggering detonation, Acta Astronautica 115 (2015), pp. 82–93. https://doi.org/10.1016/j.actaastro.2015.05.019.
  • M. Ivanov, A. Kiverin, and M. Liberman, Ignition of deflagration and detonation ahead of the flame due to radiative preheating of suspended micro particles, Combust. Flame 16 (2015), pp. 3612–3621.
  • S. Moore and F. Weinberg, High propagation rates of explosions in large volumes of gaseous mixtures, Nature 290 (1981), pp. 39–40.
  • T. Li and R. Lindstedt, Thermal radiation induced ignition of multipoint turbulent explosions, Proc. Safety Environm. Protection 107 (2017), pp. 108–121.
  • T. Elperin, N. Kleeorin, and I. Rogachevskii, Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow, Phys. Rev. Lett. 77 (1996), pp. 5373–5376.
  • E. Balkovsky, G. Falkovich, and A. Fouxon, Intermittent distribution of inertial particles in turbulent flows, Phys. Rev. Lett. 86 (2001), pp. 2790–2793.
  • T. Elperin, N. Kleeorin, V.S. L'vov, I. Rogachevskii, and D. Sokoloff, Clustering instability of the spatial distribution of inertial particles in turbulent flows, Phys. Rev. E 66 (2002), Article ID 036302. https://doi.org/10.1103/PhysRevE.66.036302.
  • T. Elperin, N. Kleeorin, M.A. Liberman, V.S. L'vov, and I. Rogachevskii, Clustering of aerosols in atmospheric turbulent flow, Environm. Fluid Mech. 7 (2007), pp. 173–193.
  • J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi, Heavy particle concentration in turbulence at dissipative and inertial scales, Phys. Rev. Lett. 98 (2007), Article ID 084502.
  • F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Annu. Rev. Fluid Mech. 41 (2009), pp. 375–404.
  • Z. Warhaft, Why we need experiments at high Reynolds numbers, Fluid Dynam. Res. 41 (2009), Paper No. 021401. http://iopscience.iop.org/article/10.1088/0169-5983/41/2/021401.
  • H. Xu and E. Bodenschatz, Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows, Physica D 237 (2008), pp. 2095–2100.
  • S. Balachandar and J.K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech. 42 (2010), pp. 111–133.
  • E.-W. Saw, G.P. Bewley, E. Bodenschatz, S. Sankar Ray, and J. Bec, Extreme fluctuations of the relative velocities between droplets in turbulent airflow, Phys. Fluids 26 (2014), Article ID 111702. https://doi.org/10.1063/1.4900848.
  • T. Elperin, N. Kleeorin, M. Liberman, and I. Rogachevskii, Tangling clustering instability for small particles in temperature stratified turbulence, Phys. Fluids 25 (2013), Article ID 085104.
  • T. Elperin, N. Kleeorin, B. Krasovitov, M. Kulmala, M. Liberman, I. Rogachevskii, and S. Zilitinkevich, Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere, Phys. Rev. E 92 (2015), Article ID 013012.
  • A. Eidelman, T. Elperin, N. Kleeorin, B. Melnik, and I. Rogachevskii, Tangling clustering of inertial particles in stably stratified turbulence, Phys. Rev. E 81 (2010), Article ID 056313.
  • N. Kliorin, Y.A. Kravtsov, A. Mereminskii, and V. Mirovskii, Clearing effects and radiative transfer in a medium with large-scale fluctuations in the density of scatterers, Radiophys. Quantum Electronics 32 (1989), pp. 793–797.
  • Y.A. Kravtsov, New effects in wave propagation and scattering in random media (a mini review), Appl. Optics 32 (1993), pp. 2681–2691.
  • L.A. Apresyan and Y.A. Kravtsov, Radiation Transfer: Statistical and Wave Aspects, Gordon and Breach, Amsterdam, 1996.
  • E. Farbar, I.D. Boyd, and M. Esmaily-Moghadam, Monte Carlo modeling of radiative heat transfer in particle-laden flow, J. Quant. Spectrosc. & Rad. Trans. 184 (2016), pp. 146–160.
  • A. Frankel, G. Iaccarino, and A. Mani, Convergence of the Bouguer–Beer law for radiation extinction in particulate media, J. Quant. Spectrosc. & Rad. Trans. 182 (2016), pp. 45–54. https://doi.org/10.1016/j.jqsrt.2016.05.009.
  • Y.B. Zel'dovich and Y.P. Raizer, Physics of Shock Waves and High-Temperature Phenomena, Academic Press, New York, 1966.
  • J.R. Howell, M.P. Mengüç, and R. Siegel, Thermal Radiation Heat Transfer, 5th ed. , CRC Press, Boca Raton, FL, 2010.
  • M. Liberman, N. Kleeorin, I. Rogachevskii, and N.E.L. Haugen, Mechanism of unconfined dust explosions: Turbulent clustering and radiation-induced ignition, Phys. Rev. E 95 (2017), Article ID 051101.
  • M. Sofiev, V. Sofieva, T. Elperin, N. Kleeorin, I. Rogachevskii, and S. Zilitinskevich, Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows, J. Geophys. Res. 114 (2009), Article ID D18209.
  • A. Frankel, G. Iaccarino, and A. Mani, Optical depth in particle-laden turbulent flows, J. Quant. Spectrosc. & Rad. Trans. 201 (2017), pp. 10–16.
  • A. Frankel, Modeling radiation transport in turbulent particle-laden media, Ph.D. thesis, Stanford University, August, 2017. http://purl.stanford.edu/vb385vd9358.
  • F. Beyrau, M. Hadjipanayis, and R. Lindstedt, Ignition of fuel/air mixtures by radiatively heated particles, Proc. Combust. Inst. 34 (2013), pp. 2065–2072.
  • F. Beyrau, M. Hadjipanayis, and R. Lindstedt, Time-resolved temperature measurements for inert and reactive particles in explosive atmospheres, Proc. Combust. Inst. 35 (2015), pp. 2067–2074.
  • A. Acrivos and T.D. Taylor, Heat and mass transfer from single spheres in Stokes flow, Phys. Fluids 5 (1962), pp. 387–394.
  • S.P. Owocki and N.J. Shaviv, The spectral temperature of optically thick outflows with application to light echo spectra from η Carinae's giant eruption, Mon. Not. R. Astron. Soc. 462 (2016), pp. 345–351. https://doi.org/10.1093/mnras/stw1642.
  • J.O. Sundqvist, S.P. Owocki, D.H. Cohen, M.A. Leutenegger, and R.H. Townsend, A generalized porosity formalism for isotropic and anisotropic effective opacity and its effects on X-ray line attenuation in clumped O star winds, Mon. Not. R. Astron. Soc. 420 (2012), pp. 1553–1561. http://works.swarthmore.edu/fac-physics/14.