1,015
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

FGM with REDx: chemically reactive dimensionality extension

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1103-1133 | Received 13 Jul 2017, Accepted 05 Apr 2018, Published online: 25 Jun 2018

References

  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic Low-Dimensional Manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264. doi: 10.1016/0010-2180(92)90034-M
  • U. Maas and S.B. Pope, Implementation of simplified chemical kinetics based on Intrinsic Low-Dimensional Manifolds, Proc. Combust. Inst., 24 (1992), pp. 103–112. doi: 10.1016/S0082-0784(06)80017-2
  • V. Bykov and U. Maas, The extension of the ILDM concept to reaction-diffusion manifolds, Combust. Theory Model. 11 (2007), pp. 839–862. doi: 10.1080/13647830701242531
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy. Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • N. Peters, Laminar flamelet concepts in turbulent combustion, Twenty-First Symposium (International) on Combustion, 1986.
  • J.A. van Oijen and L.P.H. de Goey, Modelling of premixed laminar flames using Flamelet-Generated Manifolds, Combust. Sci. Technol. 161 (2000), pp. 113–137. doi: 10.1080/00102200008935814
  • O. Gicquel, N. Darabiha, and D. Thévenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28 (2000), pp. 1901–1908. doi: 10.1016/S0082-0784(00)80594-9
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97. doi: 10.1017/S0022112004008213
  • M. Ihme, C.M. Cha, and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach, Proc. Combust. Inst. 30 (2005), pp. 793–800. doi: 10.1016/j.proci.2004.08.260
  • J.A. van Oijen, F.A. Lammers, and L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame 127(3) (2001), pp. 2124–2134. doi: 10.1016/S0010-2180(01)00316-9
  • S. Delhaye, L.M.T. Somers, J.A. van Oijen, and L.P.H. de Goey, Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds, Proc. Combust. Inst. 32 (2009), pp. 1051–1058. doi: 10.1016/j.proci.2008.06.111
  • S.C. Hill and L.D. Smoot, Modeling of nitrogen oxides formation and destruction in combustion systems, Prog. Energy Combust. Sci. 26 (2000), pp. 417–458. doi: 10.1016/S0360-1285(00)00011-3
  • F. Biagioli and F. Güthe, Effect of pressure and fuel-air unmixedness on NOx emissions from industrial gas turbine burners, Combust. Flame 151 (2007), pp. 274–288. doi: 10.1016/j.combustflame.2007.04.007
  • A. Frassoldati, S. Frigerio, E. Colombo, F. Inzoli, and T. Faravelli, Determination of emissions from strong swirling confined flames with an integrated CFD-based procedure, Chem. Eng. Sci. 60 (2005), pp. 2851–2869. doi: 10.1016/j.ces.2004.12.038
  • G. Godel, P. Domingo, and L. Vervisch, Tabulation of chemistry for large-eddy simulation of non-premixed turbulent flames, Proc. Combust. Inst. 32 (2009), pp. 1555–1561. doi: 10.1016/j.proci.2008.06.129
  • W.P. Jones and C.H. Priddin, Predictions of the flow field and local gas composition in gas turbine combustors, Proc. Combust. Inst. 17 (1978), pp. 399–408. doi: 10.1016/S0082-0784(79)80041-7
  • A.W. Vreman, B.A. Albrecht, J.A. van Oijen, L.P.H. de Goey, and R.J.M. Bastiaans, Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F, Combust. Flame 153 (2008), pp. 394–416. doi: 10.1016/j.combustflame.2008.01.009
  • M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids 20 (2008), pp. 055110. doi: 10.1063/1.2911047
  • A. Ketelheun, C. Olbricht, F. Hahn, and J. Janicka, NO prediction in turbulent flames using LES/FGM with additional transport equations, Proc. Combust. Inst. 33 (2011), pp. 2975–2982. doi: 10.1016/j.proci.2010.07.021
  • F. Pecquery, V. Moureau, G. Lartigue, L. Vervisch, and A. Roux, Modelling nitrogen oxide emissions in turbulent flames with air dilution: Application to LES of a non-premixed jet-flame, Combust. Flame 161 (2014), pp. 496–509. doi: 10.1016/j.combustflame.2013.09.018
  • J. Nafe and U. Maas, Modeling of NO formation based on ILDM reduced chemistry, Proc. Combust. Inst. 29 (2002), pp. 1379–1385. doi: 10.1016/S1540-7489(02)80169-9
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, and Z. Qin. GRI-Mech 3.0. Available at http://www.me.berkeley.edu/gri_mech/, 2000.
  • Eindhoven University of Technology. CHEM1D. Available at www.combustion.tue.nl.
  • R.L.G.M. Eggels and L.P.H. de Goey, Mathematically reduced reaction mechanisms applied to adiabatic flat hydrogen/air flames, Combust. Flame 100 (1995), pp. 559–570. doi: 10.1016/0010-2180(94)00108-5
  • R.D. Zucker and O. Biblarz, Fundamentals of Gas Dynamics, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2002.
  • Y. Niu, L. Vervisch, and P. Dinh Tao, An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition, Combust. Flame 160 (2013), pp. 776–785. doi: 10.1016/j.combustflame.2012.11.015