509
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Joint-scalar transported PDF modelling of soot in a turbulent non-premixed natural gas flame

& ORCID Icon
Pages 1134-1175 | Received 13 Sep 2017, Accepted 11 Apr 2018, Published online: 30 Jun 2018

References

  • M. von Smoluchowski, Three lectures on diffusion, Brownian movement and coagulation of colloidal particles, Phys. Zeitschrift 17 (1916), pp. 557–571. 585–599.
  • F. Gelbard, Y. Tambour, and J.H. Seinfeld, Sectional representations for simulating aerosol dynamics, J. Colloid Interface Sci. 76 (1980), pp. 541–556. doi: 10.1016/0021-9797(80)90394-X
  • T.T. Nguyen, F. Laurent, R.O. Fox, and M. Massot, Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes, J. Comput. Phys. 325 (2016), pp. 129–156. doi: 10.1016/j.jcp.2016.08.017
  • M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, and R.J. Hall, Soot formation in laminar diffusion flames, Combust. Flame 143 (2005), pp. 613–628. doi: 10.1016/j.combustflame.2005.08.028
  • S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization – I. A fixed pivot technique, Chem. Eng. Sci. 51 (1996), pp. 1311–1332. doi: 10.1016/0009-2509(96)88489-2
  • J.S. Bhatt and R.P. Lindstedt, Analysis of the impact of agglomeration and surface chemistry models on soot formation and oxidation, Proc. Combust. Inst. 32 (2009), pp. 713–720. doi: 10.1016/j.proci.2008.06.201
  • R.P. Lindstedt and B.B.O. Waldheim, Modeling of soot particle size distributions in premixed stagnation flow flames, Proc. Combust. Inst. 34 (2013), pp. 1861–1868. doi: 10.1016/j.proci.2012.05.047
  • S.L. Manzello, D.B. Lenhert, A. Yozgatligil, M.T. Donovan, G.W. Mulholland, M.R. Zachariah, and W. Tsang, Soot particle size distributions in a well-stirred reactor/plug flow reactor, Proc. Combust. Inst. 31 (2007), pp. 675–683. doi: 10.1016/j.proci.2006.07.013
  • D.B. Lenhert and S.L. Manzello, Effects of benzene and naphthalene addition on soot inception in a well-stirred reactor/plug flow reactor, Proc. Combust. Inst. 32 (2009), pp. 657–664. doi: 10.1016/j.proci.2008.07.016
  • A.D. Abid, N. Heinz, E.D. Tolmachoff, D.J. Phares, C.S. Campbell, and H. Wang, On evolution of particle size distribution functions of incipient soot in premixed ethylene–oxygen–argon flames, Combust. Flame 154 (2008), pp. 775–788. doi: 10.1016/j.combustflame.2008.06.009
  • A.D. Abid, E.D. Tolmachoff, D.J. Phares, H. Wang, Y. Liu, and A. Laskin, Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping, Proc. Combust. Inst. 32 (2009), pp. 681–688. doi: 10.1016/j.proci.2008.07.023
  • A.D. Abid, J. Camacho, D.A. Sheen, and H. Wang, Quantitative measurement of soot particle size distribution in premixed flames – The burner-stabilized stagnation flame approach, Combust. Flame 156 (2009), pp. 1862–1870. doi: 10.1016/j.combustflame.2009.05.010
  • S.H. Park and S.N. Rogak, A novel fixed-sectional model for the formation and growth of aerosol agglomerates, J. Aerosol Sci. 35 (2004), pp. 1385–1404. doi: 10.1016/j.jaerosci.2004.05.010
  • M. Frenklach and S.J. Harris, Aerosol dynamics modeling using the method of moments, J. Colloid Interface Sci. 118 (1987), pp. 252–261. doi: 10.1016/0021-9797(87)90454-1
  • M. Frenklach, Method of moments with interpolative closure, Chem. Eng. Sci. 57 (2002), pp. 2229–2239. doi: 10.1016/S0009-2509(02)00113-6
  • R. McGraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol. 27 (1997), pp. 255–265. doi: 10.1080/02786829708965471
  • D.L. Marchisio and R.O. Fox, Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci. 36 (2005), pp. 43–73. doi: 10.1016/j.jaerosci.2004.07.009
  • M.E. Mueller, G. Blanquart, and H. Pitsch, Hybrid method of moments for modeling soot formation and growth, Combust. Flame 156 (2009), pp. 1143–1155. doi: 10.1016/j.combustflame.2009.01.025
  • C. Yuan and R.O. Fox, Conditional quadrature method of moments for kinetic equations, J. Comput. Phys. 230 (2011), pp. 8216–8246. doi: 10.1016/j.jcp.2011.07.020
  • S. Salenbauch, A. Cuoci, A. Frassoldati, C. Saggese, T. Faravelli, and C. Hasse, Modeling soot formation in premixed flames using an extended conditional quadrature method of moments, Combust. Flame 162 (2015), pp. 2529–2543. doi: 10.1016/j.combustflame.2015.03.002
  • K.M. Leung, R.P. Lindstedt, and W.P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. Flame 87 (1991), pp. 289–305. doi: 10.1016/0010-2180(91)90114-Q
  • R.P. Lindstedt, Simplified soot nucleation and surface growth steps for non-premixed flames, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., Springer-Verlag, New York, 1994, pp. 417–441.
  • M. Fairweather, W.P. Jones, H.S. Ledin, and R.P. Lindstedt, Predictions of soot formation in turbulent, non-premixed propane flames, Proc. Combust. Inst. 24 (1992), pp. 1067–1074. doi: 10.1016/S0082-0784(06)80126-8
  • M. Fairweather, W.P. Jones, and R.P. Lindstedt, Predictions of radiative transfer from a turbulent reacting jet in a cross-wind, Combust. Flame 89 (1992), pp. 45–63. doi: 10.1016/0010-2180(92)90077-3
  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192. doi: 10.1016/0360-1285(85)90002-4
  • P.P. Popov and S.B. Pope, Large eddy simulation/probability density function simulations of bluff body stabilized flames, Combust. Flame 161 (2014), pp. 3100–3133. doi: 10.1016/j.combustflame.2014.05.018
  • R.P. Lindstedt and S.A. Louloudi, Joint scalar transported probability density function modeling of turbulent methanol jet diffusion flames, Proc. Combust. Inst. 29 (2002), pp. 2147–2154. doi: 10.1016/S1540-7489(02)80261-9
  • R.P. Lindstedt and S.A. Louloudi, Joint-scalar transported PDF modeling of soot formation and oxidation, Proc. Combust. Inst. 30 (2005), pp. 775–783. doi: 10.1016/j.proci.2004.08.080
  • T.W.J. Peeters, P.P.J. Stroomer, J.E. de Vries, D.J.E.M. Roekaerts, and C.J. Hoogendoorn, Comparative experimental and numerical investigation of a piloted turbulent natural-gas diffusion flame, Proc. Combust. Inst. 25 (1994), pp. 1241–1248. doi: 10.1016/S0082-0784(06)80764-2
  • The University of Adelaide, International sooting flame (ISF) workshop, Available at http://www.adelaide.edu.au/cet/isfworkshop/.
  • P.P.J. Stroomer, J.E. de Vries, and T.H. van der Meer, Effects of small- and large-scale structures in a piloted jet diffusion flame, Flow Turbul. Combust. 62 (1999), pp. 53–68. doi: 10.1023/A:1009998109665
  • P.A. Nooren, Stochastic modeling of turbulent natural-gas flames, Ph.D. thesis, Delft University of Technology, 1998.
  • P.A. Nooren, M. Versluis, T.H. van der Meer, R.S. Barlow, and J.H. Frank, Raman–Rayleigh–LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame, Appl. Phys. B Lasers Opt. 71 (2000), pp. 95–111. doi: 10.1007/s003400000278
  • N.H. Qamar, Z.T. Alwahabi, Q.N. Chan, G.J. Nathan, D. Roekaerts, and K.D. King, Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas, Combust. Flame 156 (2009), pp. 1339–1347. doi: 10.1016/j.combustflame.2009.02.011
  • M.E. Mueller and H. Pitsch, LES model for sooting turbulent nonpremixed flames, Combust. Flame 159 (2012), pp. 2166–2180. doi: 10.1016/j.combustflame.2012.02.001
  • P. Donde, V. Raman, M.E. Mueller, and H. Pitsch, LES/PDF based modeling of soot-turbulence interactions in turbulent flames, Proc. Combust. Inst. 34 (2013), pp. 1183–1192. doi: 10.1016/j.proci.2012.07.055
  • P.A. Nooren, H.A. Wouters, T.W.J. Peeters, D. Roekaerts, U. Maas, and D. Schmidt, Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame, Combust. Theory Model. 1 (1997), pp. 79–96. doi: 10.1080/713665231
  • B. Merci, B. Naud, and D. Roekaerts, Flow and mixing fields for transported scalar PDF simulations of a piloted jet diffusion flame (‘Delft Flame III’), Flow Turbul. Combust. 74 (2005), pp. 239–272. doi: 10.1007/s10494-005-4872-1
  • B. Merci, D. Roekaerts, and B. Naud, Study of the performance of three micromixing models in transported scalar PDF simulations of a piloted jet diffusion flame (‘Delft Flame III’), Combust. Flame 144 (2006), pp. 476–493. doi: 10.1016/j.combustflame.2005.07.014
  • D. Roekaerts, B. Merci, and B. Naud, Comparison of transported scalar PDF and velocity-scalar PDF approaches to ‘Delft flame III’, Compt Rend Mécan 334 (2006), pp. 507–516. doi: 10.1016/j.crme.2006.07.007
  • A. Habibi, B. Merci, and D. Roekaerts, Turbulence radiation interaction in Reynolds-averaged Navier–Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames, Combust. Flame 151 (2007), pp. 303–320. doi: 10.1016/j.combustflame.2007.06.003
  • S. Ayache and E. Mastorakos, Conditional moment closure/large eddy simulation of the Delft-III natural gas non-premixed jet flame, Flow Turbul. Combust. 88 (2012), pp. 207–231. doi: 10.1007/s10494-011-9368-6
  • S.A. Louloudi, Transported probability density function modeling of turbulent jet flames, Ph.D. thesis, Imperial College London, 2003.
  • D.B. Spalding, GENMIX – A General Computer Program for Two-Dimensional Parabolic Phenomena, Pergamon Press, Oxford, 1977.
  • C.G. Speziale, S. Sarkar, and T.B. Gatski, Modelling the pressure–strain correlation of turbulence: An invariant dynamical systems approach, J. Fluid Mech. 227 (1991), pp. 245–272. doi: 10.1017/S0022112091000101
  • B.J. Daly and F.H. Harlow, Transport equations in turbulence, Phys. Fluids 13 (1970), pp. 2634–2649. doi: 10.1063/1.1692845
  • J. Janicka, W. Kolbe, and W. Kollmann, Closure of the transport equation for the probability density function of turbulent scalar fields, J. Non-Equilibr Thermodyn. 4 (1979), pp. 25–66. doi: 10.1515/jnet.1979.4.1.47
  • W.L. Grosshandler, RADCALA: Narrow-band model for radiation calculations in a combustion environment, Tech. Rep., NIST Technical Note 1402, 1993.
  • R.J. Hall, Computation of the radiative power loss in a sooting diffusion flame, Appl. Opt. 27 (1988), pp. 809–811. doi: 10.1364/AO.27.000809
  • M. Frenklach and H. Wang, Detailed mechanism and modeling of soot particle formation, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn, ed., Springer-Verlag, Heidelberg, 1994, pp. 165–192.
  • A. Kazakov and M. Frenklach, Dynamic modeling of soot particle coagulation and aggregation: Implementation with the method of moments and application to high-pressure laminar premixed flames, Combust. Flame 114 (1998), pp. 484–501. doi: 10.1016/S0010-2180(97)00322-2
  • S.E. Pratsinis, Simultaneous nucleation, condensation, and coagulation in aerosol reactors, J. Colloid Interface Sci. 124 (1988), pp. 416–427. doi: 10.1016/0021-9797(88)90180-4
  • Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, and M.G. Carvalho, Fractal and projected structure properties of soot aggregates, Combust. Flame 100 (1995), pp. 621–633. doi: 10.1016/0010-2180(94)00147-K
  • S. Vemury and S.E. Pratsinis, Self-preserving size distributions of agglomerates, J. Aerosol Sci. 26 (1995), pp. 175–185 doi: 10.1016/0021-8502(94)00103-6
  • S.K. Friedlander, Smoke, Dust, and Haze, 2nd ed., Oxford University Press, New York, 2000.
  • W.P. Jones and R.P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame 73 (1988), pp. 233–249. doi: 10.1016/0010-2180(88)90021-1
  • P.B. Sunderland, Ü.Ö. Köylü, and G.M. Faeth, Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air, Combust. Flame 100 (1995), pp. 310–322. doi: 10.1016/0010-2180(94)00137-H
  • K. Lin, P.B. Sunderland, and G.M. Faeth, Soot nucleation and growth in acetylene air laminar coflowing jet diffusion flames, Combust. Flame 104 (1996), pp. 369–375. doi: 10.1016/0010-2180(95)00225-1
  • P.B. Sunderland and G.M. Faeth, Soot formation in hydrocarbon air laminar jet diffusion flames, Combust. Flame 105 (1996), pp. 132–146. doi: 10.1016/0010-2180(95)00182-4
  • J.H. Kent and D. Honnery, Soot and mixture fraction in turbulent diffusion flames, Combust. Sci. Technol. 54 (1987), pp. 383–398. doi: 10.1080/00102208708947062
  • A. Coppalle and D. Joyeux, Temperature and soot volume fraction in turbulent diffusion flames: Measurements of mean and fluctuating values, Combust. Flame 96 (1994), pp. 275–285. doi: 10.1016/0010-2180(94)90014-0
  • F. Xu, K.-C. Lin, and G.M. Faeth, Soot formation in laminar premixed methane/oxygen flames at atmospheric pressure, Combust. Flame 115 (1998), pp. 195–209. doi: 10.1016/S0010-2180(98)00017-0
  • S.J. Harris and A.M. Weiner, Determination of the rate constant for soot surface, Combust. Sci. Technol. 32 (1983), pp. 267–275. doi: 10.1080/00102208308923661
  • O.B. Popovitcheva, N.M. Persiantseva, M.E. Trukhin, G.B. Rulev, N.K. Shonija, Y. Ya. Buriko, A.M. Starik, B. Demirdjian, D. Ferry, and J. Suzanne, Experimental characterization of aircraft combustor soot microstructure, surface area, porosity and water adsorption, Phys. Chem. Chem. Phys. 2 (2000), pp. 4421–4426. doi: 10.1039/b004345l
  • K.J. Rockne, G.L. Taghon, and D.S. Kosson, Pore structure of soot deposits from several combustion sources, Chemosphere 41 (2000), pp. 1125–1135. doi: 10.1016/S0045-6535(00)00040-0
  • M. Frenklach and H. Wang, Detailed modelling of soot particle nucleation and growth, Proc. Combust. Inst. 23 (1990), pp. 1559–1566. doi: 10.1016/S0082-0784(06)80426-1
  • M.L. Potter, Detailed chemical kinetic modelling of propulsion fuels, Ph.D. thesis, Imperial College London, 2003.
  • H. Guo, P.M. Anderson, and P.B. Sunderland, Optimized rate expressions for soot oxidation by OH and O, Fuel 172 (2016), pp. 248–252. doi: 10.1016/j.fuel.2016.01.030
  • K.B. Lee, M.W. Thring, and J.M. Beér, On the rate of combustion of soot in a laminar soot flame, Combust. Flame 6 (1962), pp. 137–145. doi: 10.1016/0010-2180(62)90082-2
  • C.P. Fenimore and G.W. Jones, Oxidation of soot by hydroxyl radicals, J. Phys. Chem. 71 (1967), pp. 593–597. doi: 10.1021/j100862a021
  • K.G. Neoh, Soot burnout in flames, Ph.D. thesis, Massachusetts Institute of Technology, 1980.
  • M.-L. Chan, K.N. Moody, J.R. Mullin, and A. Williams, Low-temperature oxidation of soot, Fuel 66 (1987), pp. 1694–1698. doi: 10.1016/0016-2361(87)90365-6
  • A. Garo, G. Prado, and J. Lahaye, Chemical aspects of soot particles oxidation in a laminar methane–air diffusion flame, Combust. Flame 79 (1990), pp. 226–233. doi: 10.1016/0010-2180(90)90134-D
  • R. Puri, R.J. Santoro, and K.C. Smyth, The oxidation of soot and carbon monoxide in hydrocarbon diffusion flames, Combust. Flame 97 (1994), pp. 125–144. doi: 10.1016/0010-2180(94)90001-9
  • R. Puri, R.J. Santoro, and K.C. Smyth, Erratum, Combust. Flame 102 (1995), pp. 226–228. doi: 10.1016/0010-2180(95)00045-8
  • K.J. Higgins, H. Jung, D.B. Kittelson, J.T. Roberts, and M.R. Zachariah, Size-selected nanoparticle chemistry: Kinetics of soot oxidation, J. Phys. Chem. A 106 (2002), pp. 96–103. doi: 10.1021/jp004466f
  • F. Xu, A.M. El-Leathy, C.H. Kim, and G.M. Faeth, Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure, Combust. Flame 132 (2003), pp. 43–57. doi: 10.1016/S0010-2180(02)00459-5
  • C.H. Kim, A.M. El-Leathy, F. Xu, and G.M. Faeth, Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1–1.0 atm, Combust. Flame 136 (2004), pp. 191–207. doi: 10.1016/j.combustflame.2003.09.017
  • C.H. Kim, F. Xu, and G.M. Faeth, Soot surface growth and oxidation at pressures up to 8.0 atm in laminar nonpremixed and partially premixed flames, Combust. Flame 152 (2008), pp. 301–316. doi: 10.1016/j.combustflame.2007.10.016
  • M. Kalogirou and Z. Samaras, Soot oxidation kinetics from TG experiments, J. Therm. Anal. Calorim. 99 (2010), pp. 1005–1010. doi: 10.1007/s10973-010-0707-y
  • H.N. Sharma, L. Pahalagedara, A. Joshi, S.L. Suib, and A.B. Mhadeshwar, Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis, Energy Fuels 26 (2012), pp. 5613–5625. doi: 10.1021/ef3009025
  • P. Roth, O. Brandt, and S. von Gersum, High temperature oxidation of suspended soot particles verified by CO and CO measurements, Proc. Combust. Inst. 23 (1990), pp. 1485–1491. doi: 10.1016/S0082-0784(06)80417-0
  • R.P. Lindstedt, S.A. Louloudi, and E.M. Váos, Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry, Proc. Combust. Inst. 28 (2000), pp. 149–156. doi: 10.1016/S0082-0784(00)80206-4
  • T.S. Kuan, R.P. Lindstedt, and E.M. Váos, Higher moment based modeling of turbulence enhanced explosion kernels in confined fuel–air mixtures, in Advances in Confined Detonations and Pulse Detonation Engines, G. Roy, ed., Torus Press, Moscow, 2003, pp. 17–40.
  • R.P. Lindstedt and E.M. Váos, Transported PDF modeling of high-Reynolds-number premixed turbulent flames, Combust. Flame 145 (2006), pp. 495–511. doi: 10.1016/j.combustflame.2005.12.015
  • R.P. Lindstedt, H. Ozarovsky, R.S. Barlow, and A.N. Karpetis, Progression of localized extinction in high Reynolds number turbulent jet flames, Proc. Combust. Inst. 31 (2007), pp. 1551–1558. doi: 10.1016/j.proci.2006.08.099
  • K. Gkagkas and R.P. Lindstedt, The impact of reduced chemistry on auto-ignition of H in turbulent flows, Combust. Theory Model. 13 (2009), pp. 607–643. doi: 10.1080/13647830902928524
  • B.B.O. Waldheim, Modelling of soot formation and aromatic growth in laminar flames and reactor systems, Ph.D. thesis, Imperial College London, 2015.
  • J.E. de Vries, Study on turbulent fluctuations in diffusion flames using laser induced fluorescence, Ph.D. thesis, Delft University of Technology, 1994.
  • R.W. Bilger, S.H. Stårner, and R.J. Kee, On reduced mechanisms for methane–air combustion in nonpremixed flames, Combust. Flame 80 (1990), pp. 135–149. doi: 10.1016/0010-2180(90)90122-8
  • A. Kazakov, H. Wang, and M. Frenklach, Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar, Combust. Flame 100 (1995), pp. 111–120. doi: 10.1016/0010-2180(94)00086-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.