470
Views
10
CrossRef citations to date
0
Altmetric
Articles

Effects of blending 2,5-dimethylfuran on the laminar burning velocity and ignition delay time of isooctane/air mixture

ORCID Icon &
Pages 105-126 | Received 05 Dec 2017, Accepted 15 Jun 2018, Published online: 04 Jul 2018

Reference

  • CO2 emissions from fuel combustion, International Energy Agency, 2016.
  • W.R. Chang, J.J. Hwang, and W. Wu, Environmental impact and sustainability study on biofuels for transportation applications, Renew. Sustain. Energy Rev. 67 (2017), pp. 277–288.
  • Technology roadmap-biofuels for transport, International Energy Agency, 2011.
  • B.E. Dale and D. Pimentel, Two views on whether corn ethanol and, eventually, ethanol from cellulosic biomass will efficiently deliver national energy security, Chem. Eng. News 85(51) (2007), pp. 12–16.
  • D. Pimentel and T. Patzek, Ethanol production: energy and economic issues related to US and Brazilian sugarcane, Nat. Resources Res. 16(3) (2007), pp. 235–242.
  • M. Mascal and E.B. Nikitin, Direct, High-yield conversion of cellulose into biofuel, Angew. Chem., Int. Ed. 120(41) (2008), pp. 8042–8044.
  • H. Zhao, J.E. Holladay, H. Brown, and Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316(5831) (2007), pp. 1597–1600.
  • Y. Román-Leshkov, C.J. Barrett, Z.Y. Liu, and J.A. Dumesic, Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates, Nature 447(7147) (2007), pp. 982–985.
  • N. Xu, J. Gong, and Z. Huang, Review on the production methods and fundamental combustion characteristics of furan derivatives, Renew. Sustain. Energy Rev. 54 (2016), pp. 1189–1211.
  • J.B. Binder and R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131(5) (2009), pp. 1979–1985.
  • S. Zhong, R. Daniel, H. Xu, J. Zhang, D. Turner, M.L. Wyszynski, and P. Richards, Combustion and emissions of 2, 5–dimethylfuran in a direct-injection spark-ignition engine, Energy Fuels 24(5) (2010), pp. 2891–2899.
  • R. Daniel, G. Tian, H. Xu, M.L. Wyszynski, X. Wu, and Z. Huang, Effect of spark timing and load on a DISI engine fuelled with 2, 5–dimethylfuran, Fuel 90(2) (2011), pp. 449–458.
  • R. Daniel, L. Wei, H. Xu, C. Wang, M.L. Wyszynski, and S. Shuai, Speciation of hydrocarbon and carbonyl emissions of 2, 5–dimethylfuran combustion in a DISI engine, Energy Fuels 26(11) (2012), pp. 6661–6668.
  • R. Daniel, H. Xu, C. Wang, D. Richardson, and S. Shuai, Combustion performance of 2, 5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine, Appl. Energy 98 (2012), pp. 59–68.
  • Q. Li, J. Fu, X. Wu, C. Tang, and Z. Huang, Laminar flame speeds of DMF/iso-octane-air-N2/CO2 mixtures, Energy Fuels 26(2) (2012), pp. 917–925.
  • X. Wu, Q. Li, J. Fu, C. Tang, Z. Huang, R. Daniel, G. Tian, and H. Xu, Laminar burning characteristics of 2, 5–dimethylfuran and iso-octane blend at elevated temperatures and pressures, Fuel 95 (2012), pp. 234–240.
  • N. Xu, Y. Wu, C. Tang, P. Zhang, X. He, Z. Wang, and Z. Huang, Experimental study of 2, 5–dimethylfuran and 2-methylfuran in a rapid compression machine: comparison of the ignition delay times and reactivity at low to intermediate temperature, Combust. Flame 168 (2016), pp. 216–227.
  • K.P. Somers, J.M. Simmie, F. Gillespie, C. Conroy, G. Black, W.K. Metcalfe, F. Battin-Leclerc, P. Dirrenberger, O. Herbinet, P.A. Glaude, Dagaut P., C. Togbé, K. Yasunaga, R.X. Fernandes, C. Lee, R. Tripathi, H.J. Curran. A comprehensive experimental and detailed chemical kinetic modelling study of 2, 5–dimethylfuran pyrolysis and oxidation, Combust. Flame 160(11) (2013), pp. 2291–2318.
  • M.A. Eldeeb and B. Akih-Kumgeh, Investigation of 2, 5–dimethyl furan and iso-octane ignition, Combust. Flame 162(6) (2015), pp. 2454–2465.
  • X. Zhen, Y. Wang, and D. Liu, An overview of the chemical reaction mechanisms for gasoline surrogate fuels, Appl. Therm. Eng. 124 (2017), pp. 1257–1268.
  • M.P. Halstead, L.J. Kirsch, and C.P. Quinn, The autoignition of hydrocarbon fuels at high temperatures and pressures—fitting of a mathematical model, Combust. Flame 30 (1977), pp. 45–60.
  • N. Atef, G. Kukkadapu, S.Y. Mohamed, M. Al Rashidi, C. Banyon, M. Mehl, K.A. Heufer, E.F. Nasir, A. Alfazazi, A.K. Das, C.K. Westbrook, W.J. Pitz, T. Lu, A. Farooq, C.-J. Sung, H.J. Curran, and S.M. Sarathy. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics, Combust. Flame 178 (2017), pp. 111–134.
  • S.M. Sarathy, A. Farooq, and G.T. Kalghatgi, Recent progress in gasoline surrogate fuels, Prog. Energy Combust. Sci. 65 (2018), pp. 67–108
  • R. Li, G. He, D. Zhang, and F. Qin, Skeletal Kinetic Mechanism Generation and Uncertainty Analysis for Combustion of Iso-octane at High Temperatures, Energy Fuels, 32 (3) (2018), pp. 3842–3850.
  • M. Chaos, A. Kazakov, Z. Zhao, and F.L. Dryer, A high-temperature chemical kinetic model for primary reference fuels, Int. J. Chem. Kinet. 39 (2007), pp. 399–414.
  • P. Pepiot-Desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame 154(1) (2008), pp. 67–81.
  • K.E. Niemeyer, C.J. Sung, and M.P. Raju, Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis, Combust. Flame 157 (2010), pp. 1760–1770.
  • K.E. Niemeyer and C.J. Sung, Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels, Combust. Flame 161(11) (2014) pp. 2752–2764.
  • A.S. Tomlin, M.J. Pilling, J.H. Merkin, J. Brindley, N. Burgess, and A. Gough, Reduced Mechanisms for Propane Pyrolysis, Ind. Eng. Chem. Res. 34(11) (1995), pp. 3749–3760.
  • A.S. Tomlin, M.J. Pilling, T. Turányi, J.H. Merkin, and J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: Sensitivity and quasi-steady-state analyses, Combust. Flame 91(2) (1992), pp. 107–130.
  • H. Wang and M. Frenklach, Detailed reduction of reaction mechanisms for flame modeling, Combust. Flame 87(3–4) (1991), pp. 365–370.
  • A.B. Bendtsen, P. Glarborg, and K. Dam-Johansen, Visualization methods in analysis of detailed chemical kinetics modelling, Comput. Chem. 25(2) (2001), pp. 161–170.
  • Y. Ra and R.D. Reitz, A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels, Combust. Flame 155(4) (2008), pp. 713–738.
  • B. Bhattacharjee, D.A. Schwer, P.I. Barton, and W.H. Green, Optimally-reduced kinetic models: Reaction elimination in large-scale kinetic mechanisms, Combust. Flame 135(3) (2003), pp. 191–208.
  • N.J. Brown, G. Li, and M.L. Koszykowski, Mechanism reduction via principal component analysis, Int. J. Chem. Kinet. 29(6) (1997), pp. 393–414.
  • J.C. Sutherland and A. Parente, Combustion modeling using principal component analysis, Proc. Combust. Inst. 32(1) (2009), pp. 1563–1570.
  • T. Lu and C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (2005), pp. 1333–1341.
  • T. Lu and C.K. Law, On the applicability of directed relation graphs to the reduction of reaction mechanisms, Combust. Flame 146 (2006), pp. 472–483.
  • T. Lu and C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy Combust. Sci. 35(2) (2009), pp. 192–215.
  • C.S. Yoo, Z. Luo, T. Lu, H. Kim, and J.H. Chen, A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions, Proc. Combust. Inst. 34(2) (2013), pp. 2985–2993.
  • M. Mehl, W.J. Pitz, M. Sjöberg and J.E. Dec, Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine, SAE Tech. Pap. 2009-01–18 (2009). Available at http://papers.sae.org/2009-01-1806/.
  • E.R. Ritter and J.W. Bozzelli, THERM: Thermodynamic property estimation for gas phase radicals and molecules, Int. J. Chem. Kinet. 23 (1991), pp. 767–778.
  • K.P. Somers, On the pyrolysis and combustion of furans:quantum chemical, statistical rate theory, and chemical kinetic modelling studies, Ph.D Thesis, National University of Ireland, Galway (2014). Available at https://aran.library.nuigalway.ie/handle/10379/4458?show=full.
  • M. Mehl, W.J. Pitz, C.K. Westbrook and H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011), pp.193–200.
  • H. Wang and D.A. Sheen, Combustion kinetic model uncertainty quantification, propagation and minimization, Prog. Energy Combust. Sci. 47 (2015), pp. 1–31.
  • C. Togbé, L.S. Tran, D. Liu, D. Felsmann, P. Oßwald, P.A. Glaude, B. Sirjean, R. Fournet, F. Battin-Leclerc, and K. Kohse-Höinghaus, Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography–Part III: 2, 5–Dimethylfuran, Combust. Flame 161(3) (2014), pp. 780–797.
  • X. Wu, Z. Huang, X. Wang, C. Jin, C. Tang, L. Wei, and C.K. Law, Laminar burning velocities and flame instabilities of 2, 5–dimethylfuran–air mixtures at elevated pressures, Combust. Flame 158(3) (2011), pp. 539–546.
  • X. Wu, Z. Huang, C. Jin, X. Wang, and L. Wei, Laminar burning velocities and Markstein lengths of 2, 5–dimethylfuran-air premixed flames at elevated temperatures, Combust. Sci. Technol. 183(3) (2010), pp. 220–237.
  • A.P. Kelley and C.K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame 156(9) (2009), pp. 1844–1851.
  • P. Dirrenberger, P.A. Glaude, R. Bounaceur, H. Le Gall, A.P. da Cruz, A.A. Konnov, and F. Battin-Leclerc, Laminar burning velocity of gasolines with addition of ethanol, Fuel 115 (2014), pp. 162–169.
  • K. Kumar, J.E. Freeh, C.J. Sung, and Y. Huang, Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures, J. Propul. Power 23(2) (2007), pp. 428–436.
  • J.P.J. Van Lipzig, E.J.K. Nilsson, L.P.H. De Goey, and A.A. Konnov, Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures, Fuel 90(8) (2011), pp. 2773–2781.
  • L. Sileghem, V.A. Alekseev, J. Vancoillie, E.J.K. Nilsson, S. Verhelst, and A.A. Konnov, Laminar burning velocities of primary reference fuels and simple alcohols, Fuel 115 (2014), pp. 32–40.
  • A. Bhattacharya, D.K. Banerjee, D. Mamaikin, A. Datta, and M. Wensing, Effects of exhaust gas dilution on the laminar burning velocity of real-world gasoline fuel flame in air, Energy Fuels 29(10) (2015), pp. 6768–6779.
  • R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 1987.
  • A. Bhattacharya, A. Datta, and M. Wensing, Laminar burning velocity and ignition delay time for premixed isooctane–air flames with syngas addition, Combust. Theor. Model. 21(2) (2017), pp. 228–247.
  • M.A. Oehlschlaeger, D.F. Davidson, J.T. Herbon, and R.K. Hanson, Shock tube measurements of branched alkane ignition times and OH concentration time histories, Int. J. Chem. Kinet. 36(2) (2003), pp. 67–78.
  • Y. Sakai, H. Ozawa, T. Ogura, A. Miyoshi, M. Koshi, and W.J. Pitz, Effects of toluene addition to primary feference fuel at high temperature, SAE Technical Paper Series 2007-01-4104 (2007). Available at http://papers.sae.org/2007-01-4104/.
  • R. Minetti, M. Carlier, M. Ribaucour, E. Therssen, and L.R. Sochet, Comparison of oxidation and autoignition of the two primary reference fuels by rapid compression, Symposium (International) on Combustion. 26 (1996) pp. 747–753.
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combust. Flame 129(3) (2002), pp. 253–280.
  • C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, 2006.
  • A. Bhattacharya and A. Datta, Syngas as SI engine fuel: combustion perspective, in Combustion for Power Generation and Transportation, A.K. Agarwal, S. De, A. Pandey and A.P. Singh, eds., Springer, Singapore, 2017, pp. 381–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.