575
Views
3
CrossRef citations to date
0
Altmetric
Articles

Adjoint-based sensitivity and ignition threshold mapping in a turbulent mixing layer

, &
Pages 147-179 | Received 04 Mar 2018, Accepted 24 Jun 2018, Published online: 11 Jul 2018

References

  • Frendi A. and Sibulkin M., Dependence of minimum ignition energy on ignition parameters, Combust. Sci. Technol. 73 (1990), pp. 395–413. doi: 10.1080/00102209008951659
  • Drummond J.P., Diskin G.S. and Cutler A.D., Fuel-air mixing and combustion in scramjets, in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2002.
  • Phuoc T.X., Laser-induced spark ignition fundamental and applications, Opt. Lasers. Eng. 44 (2006), pp. 351–397. doi: 10.1016/j.optlaseng.2005.03.008
  • Ahmed S.F. and Mastorakos E., Spark ignition of lifted turbulent jet flames, Combust. Flame. 146 (2006), pp. 215–231. doi: 10.1016/j.combustflame.2006.03.007
  • Ahmed S.F., Balachandran R. and Mastorakos E., Measurements of ignition probability in turbulent non-premixed counterflow flames, Proc. Combust. Inst. 31 (2007), pp. 1507–1513. doi: 10.1016/j.proci.2006.07.089
  • Mastorakos E., Ignition of turbulent non-premixed flames, Prog. Energy. Combust. Sci. 35 (2009), pp. 57–97. doi: 10.1016/j.pecs.2008.07.002
  • Eyssartier A., Cuenot B., Gicquel L. and Poinsot T., Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames, Combust. Flame. 160 (2013), pp. 1191–1207. doi: 10.1016/j.combustflame.2013.01.017
  • Schefer R.W., Evans G.H., Zhang J., Ruggles A.J. and Greif R., Ignitability limits for combustion of unintended hydrogen releases: Experimental and theoretical results, Int. J. Hydrogen Energy 36 (2011), pp. 2426–2435. doi: 10.1016/j.ijhydene.2010.04.004
  • Bane S., Ziegler J., Boettcher P., Coronel S. and Shepherd J., Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, J. Loss. Prev. Process. Ind. 26 (2013), pp. 290–294. doi: 10.1016/j.jlp.2011.03.007
  • Birch A., Brown D., Dodson M. and Thomas J., Studies of flammability in turbulent flows using laser Raman spectroscopy, in Symposium (International) on Combustion, Elsevier, 17 (1979), pp. 307–314.
  • Alvani R. and Fairweather M., Ignition characteristics of turbulent jet flows, Chem. Eng. Res. Des. 80 (2002), pp. 917–923. doi: 10.1205/026387602321143471
  • Daou J. and Daou R., Flame balls in mixing layers, Combust. Flame. 161 (2014), pp. 2015–2024. doi: 10.1016/j.combustflame.2014.01.026
  • Lacaze G., Richardson E. and Poinsot T., Large eddy simulation of spark ignition in a turbulent methane jet, Combust. Flame. 156 (2009), pp. 1993–2009. doi: 10.1016/j.combustflame.2009.05.006
  • Lacaze G., Cuenot B., Poinsot T. and Oschwald M., Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration, Combust. Flame. 156 (2009), pp. 1166–1180. doi: 10.1016/j.combustflame.2009.01.004
  • Subramanian V., Domingo P. and Vervisch L., Large eddy simulation of forced ignition of an annular bluff-body burner, Combust. Flame. 157 (2010), pp. 579–601. doi: 10.1016/j.combustflame.2009.09.014
  • Jones W.P. and Prasad V.N., LES-PDF simulation of a spark ignited turbulent methane jet, Proc. Combust. Inst. 33 (2011), pp. 1355–1363. doi: 10.1016/j.proci.2010.06.076
  • Bewley T.R., Moin P. and Temam R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid. Mech. 447 (2001), pp. 179–225. doi: 10.1017/S0022112001005821
  • Wei M. and Freund J.B., A noise-controlled free shear flow, J. Fluid. Mech. 546 (2006), pp. 123–152. doi: 10.1017/S0022112005007093
  • Martins J.R., Alonso J.J. and Reuther J.J., High-fidelity aerostructural design optimization of a supersonic business jet, J. Aircr. 41 (2004), pp. 523–530. doi: 10.2514/1.11478
  • Jameson A. and Martinelli L., 2000 Aerodynamic shape optimization techniques based on control theory. In Computational Mathematics Driven by Industrial Problems (pp. 151–221). Springer, Berlin, Heidelberg, 2000.
  • Becker R. and Rannacher R., A feed-back approach to error control in finite element methods: Basic analysis and examples, Citeseer, University Park, PA, 1996, pp. 237–264.
  • Fidkowski K.J. and Darmofal D.L., Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA J. 49 (2011), pp. 673–694. doi: 10.2514/1.J050073
  • Wang Q., Forward and adjoint sensitivity computation of chaotic dynamical systems, J. Comput. Phys. 235 (2013), pp. 1–13. doi: 10.1016/j.jcp.2012.09.007
  • Hill D., Adjoint systems and their role in the receptivity problem for boundary layers, J. Fluid. Mech. 292 (1995), pp. 183–204. doi: 10.1017/S0022112095001480
  • Luchini P. and Bottaro A., Adjoint equations in stability analysis, Annu. Rev. Fluid. Mech. 46 (2014), pp. 493. doi: 10.1146/annurev-fluid-010313-141253
  • Qadri U.A., Global stability and control of swirling jets and flames, Ph.D. diss., University of Cambridge, 2014.
  • Braman K., Oliver T.A. and Raman V., Adjoint-based sensitivity analysis of flames. Combust. Theor. Model. 1 (2014), pp. 1–28.
  • Lemke M., Reiss J. and Sesterhenn J., Adjoint based optimisation of reactive compressible flows, Combust. Flame. 161 (2014), pp. 2552–2564. doi: 10.1016/j.combustflame.2014.03.020
  • Qadri U., Schmid P., Magri L. and Ihme M., Optimal ignition placement using nonlinear adjoint looping, in 69th Annual Meeting of the APS Division of Fluid Dynamics, Portland, OR, 2016.
  • Magri L. and Juniper M.P., Adjoint-based linear analysis in reduced-order thermo-acoustic models, Int. J. Spray Combust. Dyn. 6 (2014), pp. 225–246. doi: 10.1260/1756-8277.6.3.225
  • Orchini A. and Juniper M.P., Linear stability and adjoint sensitivity analysis of thermoacoustic networks with premixed flames, Combust. Flame. 165 (2016), pp. 97–108. doi: 10.1016/j.combustflame.2015.10.011
  • Rigas G., Jamieson N.P., Li L.K.B. and Juniper M.P., Experimental sensitivity analysis and control of thermoacoustic systems. J. Fluid. Mech. 787 (2016), pp. 1–10. doi: 10.1017/jfm.2015.715
  • Nadarajah S.K. and Jameson A., A comparison of the continuous and discrete adjoint approach to automati aerodynamic optimization, in Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, AIAA Reno, NV, Paper, 2000.
  • Lea D.J., Allen M.R. and Haine T.W.N., Sensitivity analysis of the climate of a chaotic system, Tellus A 52 (2000), pp. 523–532. doi: 10.3402/tellusa.v52i5.12283
  • Carnarius F.T., Ozkaya E. and Gauger N.R. Adjoint approaches for optimal flow control, in 5th Flow Control Conference, Chicago, IL, 2010.
  • Vishnampet R., Bodony D.J. and Freund J.B., A practical discrete-adjoint method for high-fidelity compressible turbulence simulations, J. Comput. Phys. 285 (2015), pp. 173–192. doi: 10.1016/j.jcp.2015.01.009
  • Capecelatro J., Vishnampet R., Bodony D.J. and Freund J.B., Adjoint-based sensitivity analysis of localized ignition in a non-premixed hydrogen–air mixing layer, in 54th AIAA Aerospace Sciences Meeting, San Diego, CA, 2016, p. 2153.
  • Capecelatro J., Bodony D.J. and Freund J.B., Adjoint-based sensitivity analysis of ignition in a turbulent reactive shear layer, in 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, 2017, p. 0846.
  • Ebrahimi R., Effect of specific heat ratio on heat release analysis in a spark ignition engine, Sci. Iranica 18 (2011), pp. 1231–1236. doi: 10.1016/j.scient.2011.11.002
  • Williams F.A., Theory of combustion in laminar flows, Annu. Rev. Fluid. Mech. 3 (1971), pp. 171–188. doi: 10.1146/annurev.fl.03.010171.001131
  • Poinsot T. and Veynante D., Theoretical and Numerical Combustion, Edwards, Philadelphia, PA, 2005.
  • Ballal D.R. and Lefebvre A., Spark ignition of turbulent flowing gases, in Proceedings of the 15th Aerospace Sciences Meeting Paper, AIAA Los Angeles, CA, 1977, pp. 77–185.
  • Chakraborty N. and Mastorakos E., Numerical investigation of edge flame propagation characteristics in turbulent mixing layers, Phys. Fluids 18 (2006), pp. 105103.
  • Chakraborty N. and Mastorakos E., Direct numerical simulations of localised forced ignition in turbulent mixing layers: the effects of mixture fraction and its gradient, Flow Turbul. Combust. 80 (2008), pp. 155–186. doi: 10.1007/s10494-007-9110-6
  • Strand B., Summation by parts for finite difference approximations for d/dx, J. Comput. Phys. 110 (1994), pp. 47–67. doi: 10.1006/jcph.1994.1005
  • Mattsson K., Svärd M. and Nordström J., Stable and accurate artificial dissipation, J. Sci. Comput. 21 (2004), pp. 57–79. doi: 10.1023/B:JOMP.0000027955.75872.3f
  • Vishnampet Ganapathi Subramanian R., An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations, Ph.D. diss., University of Illinois, Urbana-Champaign, 2015.
  • Carpenter M., Gottlieb D. and Abarbenel S., Time-stable boundary conditions for finite difference schemes involving hyperbolic systems: methodology and application for high-order compact schemes, J. Comput. Phys. 111 (1994), pp. 220–236. doi: 10.1006/jcph.1994.1057
  • Nordström J. and Svärd M., Well-posed boundary conditions for the navier–stokes equations, SIAM. J. Numer. Anal. 43 (2005), pp. 1231–1255. doi: 10.1137/040604972
  • Svärd M., Carpenter M.H. and Nordström J., A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions, J. Comput. Phys. 225 (2007), pp. 1020–1038. doi: 10.1016/j.jcp.2007.01.023
  • Bodony D.J., Accuracy of the simultaneous-approximation-term boundary condition for time-dependent problems, J. Sci. Comput. 43 (2010), pp. 118–133. doi: 10.1007/s10915-010-9347-4
  • Freund J.B., Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J. 35 (1997), pp. 740. doi: 10.2514/2.167
  • Wang Q. and Gao J., The drag-adjoint field of a circular cylinder wake at Reynolds numbers 20, 100 and 500, J. Fluid. Mech. 730 (2013), pp. 145–161. doi: 10.1017/jfm.2013.323
  • Wang Q., Hu R. and Blonigan P., Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations, J. Comput. Phys. 267 (2014), pp. 210–224. doi: 10.1016/j.jcp.2014.03.002
  • Blonigan P.J., Wang Q., Nielsen E.J. and Diskin B., Least-squares shadowing sensitivity analysis of chaotic flow around a two-dimensional airfoil. AIAA J. 56 (2017), pp. 1–15.
  • Blonigan P.J., Fernandez P., Murman S.M., Wang Q., Rigas G. and Magri L., Toward a chaotic adjoint for LES (2017). Available at arXiv preprint arXiv:1702.06809.
  • Griewank A. and Corliss G.F., Automatic Differentiation of Algorithms: Theory, Implementation, and Application, in SIAM Proc. Ser., Society for Industrial and Applied Mathematics, 1991.
  • Brown G.L. and Roshko A., On density effects and large structure in turbulent mixing layers, J. Fluid. Mech. 64 (1974), pp. 775–816. doi: 10.1017/S002211207400190X
  • Pantano C., Sarkar S. and Williams F.A., Mixing of a conserved scalar in a turbulent reacting shear layer, J. Fluid. Mech. 481 (2003), pp. 291–328. doi: 10.1017/S0022112003003872
  • Pantano C. and Sarkar S., A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, J. Fluid. Mech. 451 (2002), pp. 329–371. doi: 10.1017/S0022112001006978
  • Martins J.R., Sturdza P. and Alonso J.J., The complex-step derivative approximation, ACM Trans. Math. Softw. (TOMS) 29 (2003), pp. 245–262. doi: 10.1145/838250.838251
  • Peters N., Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  • Dold J.W., Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame, Combust. Flame. 76 (1989), pp. 71–88. doi: 10.1016/0010-2180(89)90079-5
  • Hartley L.J. and Dold J.W., Flame propagation in a nonuniform mixture: analysis of a propagating triple-flame, Combust. Sci. Technol. 80 (1991), pp. 23–46. doi: 10.1080/00102209108951775
  • Buckmaster J., Edge-flames, Prog. Energy. Combust. Sci. 28 (2002), pp. 435–475. doi: 10.1016/S0360-1285(02)00008-4
  • Pantano C., Direct simulation of non-premixed flame extinction in a methane–air jet with reduced chemistry, J. Fluid. Mech. 514 (2004), pp. 231–270. doi: 10.1017/S0022112004000266
  • Pitsch H., Cha C.M. and Fedotov S., Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition, Combust. Theor. Model. 7 (2003), pp. 317–332. doi: 10.1088/1364-7830/7/2/306
  • Kleinman R. and Freund J.B., The sound from mixing layers simulated with different ranges of turbulence scales, Phys. Fluids 20 (2008), pp. 1–12. doi: 10.1063/1.3005823
  • Lui C., A numerical investigation of shock-associated noise, Ph.D. diss., Stanford University, 2003.
  • Kim J., Bodony D.J. and Freund J.B., Adjoint-based control of loud events in a turbulent jet, J. Fluid. Mech. 741 (2014), pp. 28–59. Available at http://journals.cambridge.org/article_S002211201300654X. doi: 10.1017/jfm.2013.654
  • Giles M.B. and Pierce N.A., An introduction to the adjoint approach to design, Flow Turbul. Combust. 65 (2000), pp. 393–415. doi: 10.1023/A:1011430410075
  • Foures D., Caulfield C. and Schmid P., Optimal mixing in two-dimensional plane poiseuille flow at finite péclet number, J. Fluid. Mech. 748 (2014), pp. 241–277. doi: 10.1017/jfm.2014.182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.