2,655
Views
24
CrossRef citations to date
0
Altmetric
Articles

Adjoint-based sensitivity analysis of quantities of interest of complex combustion models

, , , &
Pages 180-196 | Received 12 Oct 2017, Accepted 25 Jun 2018, Published online: 12 Jul 2018

References

  • I. Borger, A. Merkel, J. Lachmann, H.J. Spangenberg, and T. Turányi, An extended kinetic model and its reduction by sensitivity analysis for the methanol/oxygen gas-phase thermolysis, Acta Chim. Hung. 129 (1992), pp. 855–864.
  • T. Turányi, Sensitivity analysis of complex kinetic systems: Tools and applications, J. Math. Chem. 5 (1990), pp. 203–248. doi: 10.1007/BF01166355
  • M. Demiralp and H. Rabitz, Chemical kinetic functional sensitivity analysis: Derived sensitivities and general applications, J. Chem. Phys. 75 (1981), pp. 1810–1819. doi: 10.1063/1.442260
  • H. Rabitz, M. Kramer, and D. Dacol, Sensitivity analysis in chemical kinetics, Annu. Rev. Phys. Chem. 34 (1983), pp. 419–461. doi: 10.1146/annurev.pc.34.100183.002223
  • A.S. Tomlin, The role of sensitivity and uncertainty analysis in combustion modelling, Proc. Combust. Inst. 34 (2013), pp. 159–176. doi: 10.1016/j.proci.2012.07.043
  • T. Turányi and A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer, Berlin, 2016.
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of n-heptane oxidation, Combust. Flame. 114 (1998), pp. 149–177. doi: 10.1016/S0010-2180(97)00282-4
  • L. Cai, A. Sudholt, D. Lee, F. Egolfopoulos, H. Pitsch, C. Westbrook, and S. Sarathy, Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames, Combust. Flame. 161 (2014), pp. 798–809. doi: 10.1016/j.combustflame.2013.10.003
  • R. Seiser, H. Pitsch, K. Seshadri, W. Pitz, and H. Gurran, Extinction and autoignition of n-heptane in counterflow configuration, Proc. Combust. Inst. 28 (2000), pp. 2029–2037. doi: 10.1016/S0082-0784(00)80610-4
  • S.G. Davis, A.B. Mhadeshwar, D.G. Vlachos, and H. Wang, A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization, Int. J. Chem. Kinet. 36 (2004), pp. 94–106. doi: 10.1002/kin.10177
  • K.J. Hughes, J.F. Griffiths, M. Fairweather, and A.S. Tomlin, Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure-temperature ignition diagrams, Phys. Chem. Chem. Phys. 8 (2006), pp. 3197–3210. doi: 10.1039/B605379C
  • L. Cai, Y. Uygun, C. Togbé, H. Pitsch, H. Olivier, P. Dagaut, and S. Sarathy, An experimental and modeling study of n-octanol combustion, Proc. Combust. Inst. 35 (2015), pp. 419–427. doi: 10.1016/j.proci.2014.05.088
  • N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combust. Flame. 128 (2002), pp. 38–59. doi: 10.1016/S0010-2180(01)00331-5
  • A.M. Dunker, The decoupled direct method for calculating sensitivity coefficients in chemical kinetics, J. Chem. Phys. 81 (1984), pp. 2385–2393. doi: 10.1063/1.447938
  • A.M. Dunker, G. Yarwood, J.P. Ortmann, and G.M. Wilson, The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency, Environ. Sci. Technol. 36 (2002), pp. 2965–2976. doi: 10.1021/es0112691
  • J. Hwang, E.P. Dougherty, S. Rabitz, and H. Rabitz, The Green's function method of sensitivity analysis in chemical kinetics, J. Chem. Phys. 69 (1978), pp. 5180–5191. doi: 10.1063/1.436465
  • E.P. Dougherty and H. Rabitz, A computational algorithm for the Green's function method of sensitivity analysis in chemical kinetics, Int. J. Chem. Kinet. 11 (1979), pp. 1237–1248. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.550111203.
  • E.P. Dougherty, J. Hwang, and H. Rabitz, Further developments and applications of the Green's function method of sensitivity analysis in chemical kinetics, J. Chem. Phys. 71 (1979), pp. 1794–1808. doi: 10.1063/1.438530
  • M. Kramer, J. Calo, and H. Rabitz, An improved computational method for sensitivity analysis: Green's function method with AIM, Appl. Math. Model. 5 (1981), pp. 432–441. doi: 10.1016/S0307-904X(81)80027-3
  • M. Giles and N. Pierce, An introduction to the adjoint approach to design, Flow, Turbul Combust. 65 (2000), pp. 393–415. doi: 10.1023/A:1011430410075
  • M. Lemke, J. Reiss, and J. Sesterhenn, Adjoint based optimisation of reactive compressible flows, Combust. Flame. 161 (2014), pp. 2552–2564. doi: 10.1016/j.combustflame.2014.03.020
  • K. Duraisamy and J.J. Alonso, Adjoint based techniques for uncertainty quantification in turbulent flows with combustion, 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, Louisiana, 2012.
  • Q. Wang, K. Duraisamy, J.J. Alonso, and G. Iaccarino, Risk assessment of scramjet unstart using adjoint-based sampling methods, AIAA J. 50 (2012), pp. 581–592. doi: 10.2514/1.J051264
  • J. Gray, M. Lemke, J. Reiss, C. Paschereit, J. Sesterhenn, and J. Moeck, A compact shock-focusing geometry for detonation initiation: Experiments and adjoint-based variational data assimilation, Combust. Flame. 183 (2017), pp. 144–156. doi: 10.1016/j.combustflame.2017.03.014
  • K. Braman, T.A. Oliver, and V. Raman, Adjoint-based sensitivity analysis of flames, Combust. Theory Model. 19 (2015), pp. 29–56. doi: 10.1080/13647830.2014.976274
  • A. Sandu, D.N. Daescu, and G.R. Carmichael, Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I-theory and software tools, Atmos. Environ. 37 (2003), pp. 5083–5096. doi: 10.1016/j.atmosenv.2003.08.019
  • D.N. Daescu, A. Sandu, and G.R. Carmichael, Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: II-numerical validation and applications, Atmos. Environ. 37 (2003), pp. 5097–5114. doi: 10.1016/j.atmosenv.2003.08.020
  • B.J. McBride, S. Gordon, and M.A. Reno, Coefficients for calculating thermodynamic and transport properties of individual species, Tech. Rep., NASA Lewis Research Center, Heidelberg Coll., Tiffin, OH, 1993.
  • M. ÓConaire, H.J. Curran, J.M. Simmie, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet. 36 (2004), pp. 603–622. doi: 10.1002/kin.20036
  • G.P. Smith, 2017. Available at http://www.me.berkeley.edu/gri_mech/ (last seen 2017).
  • D.G. Goodwin, H.K. Moffat, and R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2017). Available at http://www.cantera.org.
  • H. Pitsch, FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame computations.
  • M. Lemke, A. Midlar, J. Reiss, V. Mehrmann, and J. Sesterhenn, Model reduction of reactive processes, in Active Flow and Combustion Control 2014, R. King, ed., Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 127, Springer International Publishing, Cham, 2015, pp. 397–413.
  • A. Jameson, Aerodynamic design via control theory, J. Sci. Comput. 3 (1988), pp. 233–260. doi: 10.1007/BF01061285
  • M. Lemke, Adjoint based data assimilation in compressible flows with application to pressure determination from PIV data, Ph. D. thesis, Technische Universität Berlin, 2015.