379
Views
4
CrossRef citations to date
0
Altmetric
Articles

Generalized entropy production analysis for mechanism reduction

, , &
Pages 197-209 | Received 17 Nov 2017, Accepted 09 Jul 2018, Published online: 09 Aug 2018

References

  • Battin-Leclerc F., Simmie J., and Blurock E., Cleaner Combustion: Developing Detailed Chemical Kinetic Models, Green Energy and Technology, Springer, London, 2013.
  • Lu T. and Law C.K., Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy. Combust. Sci. 35 (2009), pp. 192–215. doi: 10.1016/j.pecs.2008.10.002
  • Kuo K. and Acharya R., Fundamentals of Turbulent and Multi-phase Combustion, John Wiley & Sons, Hoboken, NJ, 2012
  • Schwer D.A., Lu P., and Green W.H., An adaptive chemistry approach to modeling complex kinetics in reacting flows, Combust. Flame. 133 (2003), pp. 451–465. doi: 10.1016/S0010-2180(03)00045-2
  • Turányi T. and Tomlin A.S., Analysis of Kinetic Reaction Mechanisms, Springer, Berlin, 2014
  • Goussis D.A. and Maas U., Model Reduction for Combustion Chemistry, in Turbulent Combustion Modeling: Advances, New Trends and Perspectives, T. Echekki and E. Mastorakos, eds., Springer Netherlands, Dordrecht, 2011, pp. 193–220.
  • Turányi T., Bérces T., and Vajda S., Reaction rate analysis of complex kinetic systems, Int. J. Chem. Kinet. 21 (1989), pp. 83–99. doi: 10.1002/kin.550210203
  • Massias A., Diamantis D., Mastorakos E., and Goussis D., An algorithm for the construction of global reduced mechanisms with CSP data, Combust. Flame. 117 (1999), pp. 685–708. doi: 10.1016/S0010-2180(98)00132-1
  • Frouzakis C.E. and Boulouchos K., Analysis and reduction of the CH4-air mechanism at lean conditions, Combust. Sci. Technol. 159 (2000), pp. 281–303. doi: 10.1080/00102200008935787
  • Sun W., Chen Z., Gou X., and Ju Y., A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame. 157 (2010), pp. 1298–1307. doi: 10.1016/j.combustflame.2010.03.006
  • Lu T. and Law C.K., A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (2005), pp. 1333–1341. doi: 10.1016/j.proci.2004.08.145
  • Pepiot-Desjardins P. and Pitsch H., An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame. 154 (2008), pp. 67–81. doi: 10.1016/j.combustflame.2007.10.020
  • Niemeyer K.E. and Sung C.J., On the importance of graph search algorithms for DRGEP-based mechanism reduction methods, Combust. Flame. 158 (2011), pp. 1439–1443. doi: 10.1016/j.combustflame.2010.12.010
  • Vajda S., Valko P., and Turányi T., Principal component analysis of kinetic models, Int. J. Chem. Kinet. 17 (1985), pp. 55–81. doi: 10.1002/kin.550170107
  • Bhattacharjee B., Schwer D.A., Barton P.I., and Green W.H., Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms, Combust. Flame. 135 (2003), pp. 191–208. doi: 10.1016/S0010-2180(03)00159-7
  • Keck J.C. and Gillespie D., Rate-controlled partial-equilibrium method for treating reacting gas mixtures, Combust. Flame. 17 (1971), pp. 237–241. doi: 10.1016/S0010-2180(71)80166-9
  • Beretta G.P., Keck J.C., Janbozorgi M., and Metghalchi H., The rate-controlled constrained-equilibrium approach to far-from-local-equilibrium thermodynamics, Entropy 14 (2012), pp. 92–130. doi: 10.3390/e14020092
  • Lebiedz D., Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics, J. Chem. Phys. 120 (2004), pp. 6890. doi: 10.1063/1.1652428
  • Valorani M., Paolucci S., Ciottoli P.P., and Galassi R.M., Entropy production and timescales, Combust. Theor. Modell. 21 (2017), pp. 137–157. doi: 10.1080/13647830.2016.1243733
  • Kooshkbaghi M., Frouzakis C.E., Boulouchos K., and Karlin I.V., Entropy production analysis for mechanism reduction, Combust. Flame. 161 (2014), pp. 1507–1515. doi: 10.1016/j.combustflame.2013.12.016
  • Kooshkbaghi M., Frouzakis C.E., Boulouchos K., and Karlin I.V., n-Heptane/air combustion in perfectly stirred reactors: Dynamics, bifurcations and dominant reactions at critical conditions, Combust. Flame. 162 (2015), pp. 3166–3179. doi: 10.1016/j.combustflame.2015.05.002
  • Gorban A.N. and Yablonsky G.S., Extended detailed balance for systems with irreversible reactions, Chem. Eng. Sci. 66 (2011), pp. 5388–5399. doi: 10.1016/j.ces.2011.07.054
  • Morrissey B.W., Microscopic reversibility and detailed balance. An overview, J. Chem. Educ. 52 (1975), pp. 296. doi: 10.1021/ed052p296
  • Kee R.J., Rupley F.M., Meeks E., and Miller J.A., CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Tech. Rep. SAND96-8216, Sandia National Laboratories, 1996.
  • Prigogine I., Introduction to thermodynamics of Irreversible Processes, Interscience Publishers, New York, NY, 1968
  • Kuo K., Principles of Combustion, John Wiley & Sons, Hoboken, NJ, 2005
  • Gyftopoulos E. and Beretta G., Thermodynamics: Foundations and Applications, Dover Civil and Mechanical Engineering, Dover Publications, Mineola, NY, 2012
  • Landau L. and Lifshitz E., Statistical Physics v. 5, Elsevier Butterworths-Heinemann, Oxford, 2005
  • Wang J., Modern Thermodynamics, Springer, Berlin, Heidelberg, 2011.
  • Li R.S., Catalysts and thermodynamic coupling of chemical reactions, Acta Chimica Sinica 7 (1989), pp. 304–310. doi: 10.1002/cjoc.19890070404
  • Keizer J., Thermodynamic coupling in chemical reactions, J. Theor. Biol. 49 (1975), pp. 323–335. doi: 10.1016/S0022-5193(75)80037-3
  • McBride B., Gordon S., and Reno M., Coefficients for calculating thermodynamic and transport properties of individual species, Tech. Rep., 1993.
  • Niemeyer K.E., Python-based (chemical kinetic) Model Automatic Reduction Software (pyMARS).
  • Niemeyer K.E., Sung C.J., and Raju M.P., Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis, Combust. Flame. 157 (2010), pp. 1760–1770. doi: 10.1016/j.combustflame.2009.12.022
  • Goodwin D.G., Moffat H.K., and Speth R.L., Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, (2017). Version 2.3.0.
  • Saxena P. and Williams F.A., Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide, Combust. Flame. 145 (2006), pp. 316–323. doi: 10.1016/j.combustflame.2005.10.004
  • Prince J.C. and Williams F.A., Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane, Combust. Flame. 159 (2012), pp. 2336–2344. doi: 10.1016/j.combustflame.2012.02.012
  • Prince J.C., Treviño C., and Williams F.A., A reduced reaction mechanism for the combustion of n-butane, Combust. Flame. 175 (2016), pp. 27–33. doi: 10.1016/j.combustflame.2016.06.033
  • Frassoldati A., Cuoci A., Faravelli T., Niemann U., Ranzi E., Seiser R., and Seshadri K., An experimental and kinetic modeling study of n-propanol and iso-propanol combustion, Combust. Flame. 157 (2010), pp. 2–16. doi: 10.1016/j.combustflame.2009.09.002
  • Ranzi E., Frassoldati A., Grana R., Cuoci A., Faravelli T., Kelley A., and Law C., Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energy. Combust. Sci. 38 (2012), pp. 468–501. doi: 10.1016/j.pecs.2012.03.004
  • Pitz W.J. and Mueller C.J., Recent progress in the development of diesel surrogate fuels, Prog. Energy. Combust. Sci. 37(3) (2011), pp. 330–350. doi: 10.1016/j.pecs.2010.06.004
  • Malewicki T., Gudiyella S., and Brezinsky K., Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel, Combust. Flame. 160 (2013), pp. 17–30. doi: 10.1016/j.combustflame.2012.09.013
  • Kim D., Martz J., and Violi A., A surrogate for emulating the physical and chemical properties of conventional jet fuel, Combust. Flame. 161 (2014), pp. 1489–1498. doi: 10.1016/j.combustflame.2013.12.015
  • Stagni A., Cuoci A., Frassoldati A., Faravelli T., and Ranzi E., Lumping and Reduction of Detailed Kinetic Schemes: an Effective Coupling, Industrial & Engineering Chemistry Research 53 (2014), pp. 9004–9016. doi: 10.1021/ie403272f
  • Stagni A., Frassoldati A., Cuoci A., Faravelli T., and Ranzi E., Skeletal mechanism reduction through species-targeted sensitivity analysis, Combust. Flame. 163 (2016), pp. 382–393. doi: 10.1016/j.combustflame.2015.10.013
  • Acampora L., Mancusi E., and Marra F.S., Bifurcation analysis of perfectly stirred reactors with large reaction mechanisms, Chemical Engineering Transactions 43 (2015), pp. 877–882.
  • Acampora L. and Marra F.S., Numerical strategies for the bifurcation analysis of perfectly stirred reactors with detailed combustion mechanisms, Computers and Chemical Engineering 82 (2015), pp. 273–282. doi: 10.1016/j.compchemeng.2015.07.008
  • Nishida K., Takagi T., and Kinoshita S., Analysis of entropy generation and exergy loss during combustion, Proceedings of the Combustion Institute 29 (2002), pp. 869–874. doi: 10.1016/S1540-7489(02)80111-0
  • Tosatto L., Bennett B., and Smooke M., A transport-flux-based directed relation graph method for the spatially inhomogeneous instantaneous reduction of chemical kinetic mechanisms, Combust. Flame. 158 (2011), pp. 820–835. doi: 10.1016/j.combustflame.2011.01.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.