173
Views
0
CrossRef citations to date
0
Altmetric
Articles

A hybrid multicomponent model for the vaporisation simulation of gasoline drop

, &
Pages 210-225 | Received 10 Nov 2017, Accepted 16 Jul 2018, Published online: 13 Aug 2018

References

  • S. Yang, Modeling multi-component fuel evaporation, flame propagation, and chemical kinetics processes for GDI engines, Ph.D. thesis, University of Wisconsin-Madison, 2010.
  • V. Ebrahimian and C. Habchi, Towards a predictive evaporation model for multi-component hydrocarbon droplets at all pressure conditions, Int. J. Heat Mass Tran. 54 (2011), pp. 3552–3565. doi: 10.1016/j.ijheatmasstransfer.2011.03.031
  • L. Zhang and S.-C. Kong, Vaporization modeling of petroleum–biofuel drops using a hybrid multi-component approach, Combust. Flame 157 (2010), pp. 2165–2174. doi: 10.1016/j.combustflame.2010.05.011
  • Y. Ra and R.D. Reitz, A vaporization model for discrete multi-component fuel sprays, Int. J. Multiphas. Flow 35 (2009), pp. 101–117. doi: 10.1016/j.ijmultiphaseflow.2008.10.006
  • Q. Jiao, R. Youngchul, and R.D. Reitz, Modeling the influence of molecular interactions on the vaporization of multi-component fuel sprays, SAE Technical Paper (2011), 2011-01-0387.
  • J. Abraham and V. Magi, A model for multicomponent droplet vaporization in sprays, SAE Technical Paper (1998), 980511.
  • J. Tamim and W.L.H. Hallett, A continuous thermodynamics model for multicomponent droplet vaporization, Chem. Eng. Sci. 50 (1995), pp. 2933–2942. doi: 10.1016/0009-2509(95)00131-N
  • W.L.H. Hallett, A simple model for the vaporization of droplets with large numbers of components, Combust. Flame 121 (2000), pp. 334–344. doi: 10.1016/S0010-2180(99)00144-3
  • L. Zhang and S.-C. Kong, Modeling of multi-component fuel vaporization and combustion for gasoline and diesel spray, Chem. Eng. Sci. 64 (2009), pp. 3688–3696. doi: 10.1016/j.ces.2009.05.013
  • S. Yang and R.D. Reitz, A continuous multicomponent fuel flame propagation and chemical kinetics model, J. Eng. Gas Turb. Power 132 (2010), pp. 21–27.
  • D. Wang and C.F. Lee, Continuous multicomponent fuel film vaporization model for multidimensional engine modeling, SAE Technical Paper (2005), 2005-01-0209.
  • K. Harstad, P.C. Le Clercq, and J. Bellan, Statistical model of multicomponent-fuel drop evaporation for many-drop flow simulations, AIAA J. 41 (2003), pp. 1858–1874. doi: 10.2514/2.1894
  • K. Harstad and J. Bellan, Modeling evaporation of Jet A, JP-7, and RP-1 drops at 1 to 15 bars, Combust. Flame 137 (2004), pp. 163–177. doi: 10.1016/j.combustflame.2004.01.012
  • P.C. Le Clercq and J. Bellan, Direct numerical simulation of gaseous mixing layers laden with multicomponent-liquid drops: Liquid-specific effects, J. Fluid Mech. 533 (2005), pp. 57–94. doi: 10.1017/S0022112005003940
  • S.S. Sazhin, M. Al Qubeissi, R. Nasiri, V.M. Gun’ko, A.E. Elwardany, F. Lemoine, F. Grisch, and M.R. Heikal, A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation, Fuel 129 (2014), pp. 238–266. doi: 10.1016/j.fuel.2014.03.028
  • P. Yi, W. Long, M. Jia, L. Feng, and J. Tian, Development of an improved hybrid multi-component vaporization model for realistic multi-component fuels, Int. J Heat Mass Tran. 77 (2014), pp. 173–184. doi: 10.1016/j.ijheatmasstransfer.2014.05.008
  • D.J. Torres and M.F. Trujillo, KIVA-4: An unstructured ALE code for compressible gas flow with sprays, J. Comput. Phys. 219 (2006), pp. 943–975. doi: 10.1016/j.jcp.2006.07.006
  • G.S. Zhu and R.D. Reitz, A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics, Int. J Heat Mass Tran. 45 (2002), pp. 495–507. doi: 10.1016/S0017-9310(01)00173-9
  • H. Nomura, Y. Ujiie, H. Rath, J. Sato, and M. Kono, Experimental study on high-pressure droplet evaporation using microgravity conditions, Symp. Combust. Proc. 26 (1996), pp. 1267–1273. doi: 10.1016/S0082-0784(96)80344-4
  • T.E. Daubert and R.P. Danner, Physical and thermodynamic properties of pure chemicals: Data compilation, Hemisphere, New York, 1989.
  • R.D. Silva, R. Cataluña, E.W. Menezes, D. Samios, and C. Piatnicki, Effect of additives on the antiknock properties and Reid vapor pressure of gasoline, Fuel 84 (2005), pp. 951–959. doi: 10.1016/j.fuel.2005.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.