287
Views
4
CrossRef citations to date
0
Altmetric
Articles

Rate-controlled constrained equilibrium for large hydrocarbon fuels with NTC

, &
Pages 226-244 | Received 05 Feb 2018, Accepted 26 Jul 2018, Published online: 27 Aug 2018

References

  • J.C. Keck, Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems, Prog. Energy Combust. Sci 16 (1990), pp. 125–154. doi: 10.1016/0360-1285(90)90046-6
  • J.Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations, Combust. Sci. Technol. 57 (1988), pp. 89–94. doi: 10.1080/00102208808923945
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264. doi: 10.1016/0010-2180(92)90034-M
  • S.H. Lam and D.A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinetics 26 (1994), pp. 461–486. doi: 10.1002/kin.550260408
  • C.W. Gear and I.G. Kevrekidis, Constraint-defined manifolds: a legacy code approach to low-dimensional computation, J. Sci. Comput. 25 (2005), pp. 17–28. doi: 10.1007/BF02728980
  • A.N. Gorban and I.V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci. 58 (2003), pp. 4751–4768. doi: 10.1016/j.ces.2002.12.001
  • Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, J. Chem. Phys. 124 (2006), Art. No. 114111.
  • C.S. Yoo, T. Lu, J.H. Chen, and C.K. Law, Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: parametric study, Combust. Flame 158 (2011), pp. 1727–1741. doi: 10.1016/j.combustflame.2011.01.025
  • Z. Ren, Z. Lu, Y. Gao, T. Lu, and L. Hou, A kinetics-based method for constraint selection in rate-controlled constrained equilibrium, Combust. Theory Model. 21 (2017), pp. 159–182. doi: 10.1080/13647830.2016.1201596
  • V. Yousefian, A rate-controlled constrained-equilibrium thermochemistry algorithm for complex reacting systems, Combust. Flame 115 (1998), pp. 66–80. doi: 10.1016/S0010-2180(97)00334-9
  • J.C. Keck and D. Gillespie, Rate-controlled partial-equilibrium method for treating reacting gas mixtures, Combust.Flame 17 (1971), pp. 237–241. doi: 10.1016/S0010-2180(71)80166-9
  • R. Law, M. Metghalchi, and J.C. Keck, Rate-controlled constrained equilibrium calculation of ignition delay times in hydrogen-oxygen mixtures, Symp. (Int.) Combust. 22 (1989), pp. 1705–1713. doi: 10.1016/S0082-0784(89)80183-3
  • D. Hamiroune, P. Bishnu, M. Metghalchi, and J.C. Keck, Rate-controlled constrained-equilibrium method using constraint potentials, Combust. Theory Model. 2 (1998), pp. 81–94. doi: 10.1080/713665370
  • Q. Tang and S.B. Pope, A more accurate projection in the rate-controlled constrained-equilibrium method for dimension reduction of combustion chemistry, Combust. Theory Model. 8 (2004), pp. 255–279. doi: 10.1088/1364-7830/8/2/004
  • Q. Tang and S.B. Pope, Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds, Proc. Combust. Inst. 29 (2002), pp. 1411–1417. doi: 10.1016/S1540-7489(02)80173-0
  • W.P. Jones and S. Rigopoulos, Rate-controlled constrained equilibrium: Formulation and application to nonpremixed laminar flames, Combust. Flame 142 (2005), pp. 223–234. doi: 10.1016/j.combustflame.2005.03.008
  • M. Janbozorgi, S. Ugarte, H. Metghalchi, and J.C. Keck, Combustion modeling of mono-carbon fuels using the rate-controlled constrained-equilibrium method, Combust. Flame 156 (2009), pp. 1871–1885. doi: 10.1016/j.combustflame.2009.05.013
  • S. Rigopoulos, and T. Løvås, A LOI–RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames, Proc. Combust. Inst. 32 (2009), pp. 569–576. doi: 10.1016/j.proci.2008.06.038
  • S. Ugarte, M. Metghalchi, and J.C. Keck, Methanol Oxidation Induction Times Using the Rate-controlled Constrained-equilibrium Method, ASME 2003 International Mechanical Engineering Congress and Exposition, Washington, DC, 2003.
  • V. Hiremath, Z. Ren, and S.B. Pope, A greedy algorithm for species selection in dimension reduction of combustion chemistry, Combust. Theory Model. 14 (2010), pp. 619–652. doi: 10.1080/13647830.2010.499964
  • V. Hiremath, Z. Ren, and S.B. Pope, Combined dimension reduction and tabulation strategy using ISAT–RCCE–GALI for the efficient implementation of combustion chemistry, Combust. Flame 158 (2011), pp. 2113–2127. doi: 10.1016/j.combustflame.2011.04.010
  • T. Løvås, S. Navarro-Martinez, and S. Rigopoulos, On adaptively reduced chemistry in large eddy simulations, Proc. Combust. Inst. 33 (2011), pp. 1339–1346. doi: 10.1016/j.proci.2010.05.089
  • G.P. Beretta, J.C. Keck, M. Janbozorgi, and H. Metghalchi, The rate-controlled constrained-equilibrium approach to far-from-local-equilibrium thermodynamics, Entropy 14 (2012), pp. 92–130. doi: 10.3390/e14020092
  • S. Navarro-Martinez, and S. Rigopoulos, Differential diffusion modelling in LES with RCCE-reduced chemistry, Flow Turbul. Combust. 89 (2012), pp. 311–328. doi: 10.1007/s10494-011-9370-z
  • A.K. Chatzopoulos, and S. Rigopoulos, A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames, Proc. Combust. Inst. 34 (2013), pp. 1465–1473. doi: 10.1016/j.proci.2012.06.057
  • V. Hiremath, S.R. Lantz, H. Wang, and S.B. Pope, Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry, Proc. Combust. Inst. 34 (2013), pp. 205–215. doi: 10.1016/j.proci.2012.06.004
  • V. Hiremath, and S.B. Pope, A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations, Combust. Theory Model. 17 (2013), pp. 260–293. doi: 10.1080/13647830.2012.752109
  • Z. Ren, G.M. Goldin, V. Hiremath, and S.B. Pope, Simulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry, Fuel 105 (2013), pp. 636–644. doi: 10.1016/j.fuel.2012.08.018
  • S. Elbahloul, and S. Rigopoulos, Rate-controlled constrained equilibrium (RCCE) simulations of turbulent partially premixed flames (Sandia D/E/F) and comparison with detailed chemistry, Combust. Flame 162 (2015), pp. 2256–2271. doi: 10.1016/j.combustflame.2015.01.023
  • F. Hadi, and M.R. H. Sheikhi, A comparison of constraint and constraint potential forms of the rate-controlled constraint-equilibrium method, J. Energy Res. Technol. 138 (2016), pp. 022202–022202-9. doi: 10.1115/1.4031614
  • G. Nicolas, and H. Metghalchi, Development of the rate-controlled constrained-equilibrium method for modeling of ethanol combustion, J. Energy Res. Technol. 138 (2016), pp. 022205–022205-11. doi: 10.1115/1.4031511
  • G.P. Beretta, M. Janbozorgi, and H. Metghalchi, Degree of disequilibrium analysis for automatic selection of kinetic constraints in the rate-controlled constrained-equilibrium method, Combust. Flame 168 (2016), pp. 342–364. doi: 10.1016/j.combustflame.2016.02.005
  • P. Koniavitis, S. Rigopoulos, and W.P. Jones, A methodology for derivation of RCCE-reduced mechanisms via CSP, Combust. Flame 183 (2017), pp. 126–143.
  • D. Goldthwaite, M. Janbozorgi, H. Metghalchi, and J.C. Keck, The Application of the Rate-controlled Constrained Equilibrium Technique to a Reduced Chemical Mechanism for Iso-octane, su5th US Combustion Meeting, University of California at San Diego, San Diego, CA, 2007.
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997), pp. 41–63. doi: 10.1080/713665229
  • L. Lu, and S.B. Pope, An improved algorithm for in situ adaptive tabulation, J. Comput. Phys. 228 (2009), pp. 361–386. doi: 10.1016/j.jcp.2008.09.015
  • W. Ji, P. Zhao, P. Zhang, Z. Ren, X. He, and C.K. Law, On the crossover temperature and lower turnover state in the NTC regime, Proc. Combust. Inst. 36 (2017), pp. 343–353. doi: 10.1016/j.proci.2016.05.046
  • Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer, Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport, Proc. Combust. Inst. 31 (2007), pp. 473–481. doi: 10.1016/j.proci.2006.07.106
  • G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), pp. 506–517. doi: 10.1137/0705041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.