207
Views
5
CrossRef citations to date
0
Altmetric
Articles

Concurrent implicit spectral deferred correction scheme for low-Mach number combustion with detailed chemistry

, &
Pages 279-309 | Received 25 Dec 2017, Accepted 24 Aug 2018, Published online: 21 Oct 2018

References

  • Majda A. and Sethian J., The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol. 42(3–4) (1985), pp. 185–205. doi: 10.1080/00102208508960376
  • O.M. Knio, H.N. Najm, P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow: II. stiff, operator-split formulation. J. Comput. Phys. 154(2) (1999), pp. 428–467
  • Day M.S. and Bell J.B., Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Model. 4(4) (2000), pp. 535–556. doi: 10.1088/1364-7830/4/4/309
  • H.N. Najm, O.M. Knio, Modeling low Mach number reacting flow with detailed chemistry and transport. J. Sci. Comput. 25(1–2) (2005), pp. 263–287
  • C. Safta, J. Ray, H.N. Najm, A high-order low-Mach number AMR construction for chemically reacting flows. J. Comput. Phys. 229(24) (2010), pp. 9299–9322 doi: 10.1016/j.jcp.2010.09.002
  • E. Motheau, J. Abraham, A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy. J. Comput. Phys. 313 (2016), pp. 430–454 doi: 10.1016/j.jcp.2016.02.059
  • Duarte M., Descombes S., Tenaud C., Candel S. and Massot M., Time–space adaptive numerical methods for the simulation of combustion fronts, Combust. Flame 160(6) (2013), pp. 1083–1101. doi: 10.1016/j.combustflame.2013.01.013
  • Bourlioux A., Layton A.T. and Minion M.L., High-order multi-implicit spectral deferred correction methods for problems of reactive flow, J. Comput. Phys. 189(2) (2003), pp. 651–675. doi: 10.1016/S0021-9991(03)00251-1
  • Layton A.T. and Minion M.L., Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics, J. Comput. Phys. 194(2) (2004), pp. 697–715. doi: 10.1016/j.jcp.2003.09.010
  • Nonaka A., Bell J.B., Day M.S., Gilet C., Almgren A.S. and Minion M.L., A deferred correction coupling strategy for low Mach number flow with complex chemistry, Combust. Theory Model. 16(6) (2012), pp. 1053–1088. doi: 10.1080/13647830.2012.701019
  • Pazner W.E., Nonaka A., Bell J.B., Day M.S. and Minion M.L., A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry, Combust. Theory Model. 20(3) (2016), pp. 521–547. doi: 10.1080/13647830.2016.1150519
  • Minion M.L., Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci. 1(3) (2003), pp. 471–500. doi: 10.4310/CMS.2003.v1.n3.a6
  • Burrage K., Parallel methods for ODEs, Adv. Comput. Math.7(1–2) (1997), pp. 1–31. doi: 10.1023/A:1018997130884
  • Iserles A. and Nørsett S.P., On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal.10(4) (1990), pp. 463–488. doi: 10.1093/imanum/10.4.463
  • Butcher J.C., Order and stability of parallel methods for stiff problems, Adv. Comput. Math. 7(1) (1997), pp. 79–96. doi: 10.1023/A:1018934516771
  • Christlieb A.J., Macdonald C.B. and Ong B.W., Parallel high-order integrators, SIAM. J. Sci. Comput. 32(2) (2010), pp. 818–835. doi: 10.1137/09075740X
  • R. Speck, Parallelizing spectral deferred corrections across the method. Comput. Visual Sci. 19(3–4) (2018), pp. 75–83
  • Nievergelt J., Parallel methods for integrating ordinary differential equations, Commun. ACM. 7(12) (1964), pp. 731–733. doi: 10.1145/355588.365137
  • Miranker W.L. and Liniger W., Parallel methods for the numerical integration of ordinary differential equations, Math. Comput. 21(99) (1967), pp. 303–320. doi: 10.1090/S0025-5718-1967-0223106-8
  • Lions J.-L., Maday Y. and Turinici G., Résolution d'EDP par un schéma en temps pararéel, C. R. l'Acad. Sci.-Ser. I-Math. 332(7) (2001), pp. 661–668.
  • Emmett M. and Minion M.L., Toward an efficient parallel in time method for partial differential equations, Comm. App. Math. Comp. Sci. 7(1) (2012), pp. 105–132. doi: 10.2140/camcos.2012.7.105
  • Falgout R.D., Friedhoff S., Kolev T.V., MacLachlan S.P. and Schroder J.B., Parallel time integration with multigrid, SIAM. J. Sci. Comput. 36(6) (2014), pp. C635–C661. doi: 10.1137/130944230
  • Lelarasmee E., Ruehli A.E. and Sangiovanni-Vincentelli A.L., The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 1(3) (1982), pp. 131–145. doi: 10.1109/TCAD.1982.1270004
  • Gander M.J., A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl. 6(2) (1999), pp. 125–145. doi: 10.1002/(SICI)1099-1506(199903)6:2<125::AID-NLA152>3.0.CO;2-4
  • Rehm R.G. and Baum H.R., The equations of motion for thermally driven buoyant flows, J. Res. Natl. Bur. Stand. (1934) 83 (1978), pp. 297–308. doi: 10.6028/jres.083.019
  • Kee R.J., Warnatz J. and Miller J.A., Fortran computer-code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients, Technical report, Sandia National Laboratory, USA, 1983
  • Warnatz J. and Peters N., Numerical Methods in Laminar Flame Propagation, Braunchweig, Vieweg, 1982, pp. 87–111.
  • H.N. Najm, P.S. Wyckoff, O.M. Knio, A semi-implicit numerical scheme for reacting flow: I. Stiff chemistry. J. Comput. Phys. 143(2) (1998), pp. 381–402 doi: 10.1006/jcph.1997.5856
  • Pember R.B., Howell L.H., Bell J.B., Colella P., Crutchfield W.Y., Fiveland W.A. and Jessee J.P., An adaptive projection method for unsteady, low-Mach number combustion, Combust. Sci. Technol.140(1–6) (1998), pp. 123–168. doi: 10.1080/00102209808915770
  • Dutt A., Greengard L. and Rokhlin V., Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math. 40(2) (2000), pp. 241–266. doi: 10.1023/A:1022338906936
  • Hagstrom T. and Zhou R., On the spectral deferred correction of splitting methods for initial value problems, Comm. App. Math. Comp. Sci. 1(1) (2007), pp. 169–205. doi: 10.2140/camcos.2006.1.169
  • Xia Y., Xu Y. and Shu C., Efficient time discretization for local discontinuous Galerkin methods, Discr. Contin. Dyn. Syst. Ser. B 8(3) (2007), pp. 677–693. doi: 10.3934/dcdsb.2007.8.677
  • Christlieb A.J., Ong B.W. and Qiu J.-M., Comments on high-order integrators embedded within integral deferred correction methods, Comm. App. Math. Comp. Sci. 4(1) (2009), pp. 27–56. doi: 10.2140/camcos.2009.4.27
  • Weiser M., Faster SDC convergence on non-equidistant grids by DIRK sweeps, BIT Numer. Math.55(4) (2015), pp. 1219–1241. doi: 10.1007/s10543-014-0540-y
  • Christlieb A.J., Haynes R.D. and Ong B.W., A parallel space-time algorithm, SIAM. J. Sci. Comput. 34(5) (2012), pp. C233–C248. doi: 10.1137/110843484
  • McCorquodale P. and Colella P., A high-order finite-volume method for conservation laws on locally refined grids, Comm. App. Math. Comp. Sci. 6(1) (2011), pp. 1–25. doi: 10.2140/camcos.2011.6.1
  • Zhang Q., Johansen H. and Colella P., A fourth-order accurate finite-volume method with structured adaptive mesh refinement for solving the advection-diffusion equation, SIAM. J. Sci. Comput. 34(2) (2012), pp. B179–B201. doi: 10.1137/110820105
  • Perini F., Galligani E. and Reitz R.D., An analytical Jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms, Energy Fuels 26(8) (2012), pp. 4804–4822. doi: 10.1021/ef300747n
  • Bansal G., Mascarenhas A. and Chen J.H., Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures, Combust. Flame 162(3) (2015), pp. 688–702. doi: 10.1016/j.combustflame.2014.08.021
  • Kee R.J., Grcar J.F., Smooke M.D., Miller J.A. and Meeks E, PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames, Technical report, Sandia National Laboratory, USA, 1985
  • Speck R., Ruprecht D., Emmett M., Minion M.L., Bolten M. and Krause R., A multi-level spectral deferred correction method, BIT Numer. Math. 55(3) (2015), pp. 843–867. doi: 10.1007/s10543-014-0517-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.