223
Views
1
CrossRef citations to date
0
Altmetric
Articles

Surrogate definition and homogeneous chemical kinetic model for two alkane-rich FACE gasoline fuels

, , &
Pages 337-352 | Received 10 Jan 2017, Accepted 14 Sep 2018, Published online: 25 Oct 2018

References

  • W.J. Pitz and C.J. Mueller, Recent progress in the development of diesel surrogate fuels, Prog. Energy Combust. Sci. 37 (2011), pp. 330–350. doi: 10.1016/j.pecs.2010.06.004
  • M. Mehl, W.J. Pitz, C.K. Westbrook, and H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011), pp. 193–200. doi: 10.1016/j.proci.2010.05.027
  • C. Pera and V. Knop, Methodology to define gasoline surrogates dedicated to auto-ignition in engines, Fuel 96 (2012), pp. 59–69. doi: 10.1016/j.fuel.2012.01.008
  • M. Mehl, J.-Y. Chen, W.J. Pitz, S. Sarathy, and C.K. Westbrook, An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling, Energy Fuels 25 (2011), pp. 5215–5223. doi: 10.1021/ef201099y
  • K.V. Puduppakkam, L. Liang, C.V. Naik, E. Meeks, B.G. Bunting, Combustion and emissions modeling of a gasoline HCCI engine using model fuels. SAE Tech. Pap. 2009-01-0298, 2009.
  • S.M. Sarathy, G. Kukkadapu, M. Mehl, W. Wang, T. Javed, S. Park, M.A. Oehlschlaeger, A. Farooq, W.J. Pitz, and C.-J. Sung, Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures, Proc. Combust. Inst. 35 (2015), pp. 249–257. doi: 10.1016/j.proci.2014.05.122
  • A. Ahmed, G. Goteng, V.S.B. Shankar, K. AI-Qurashi, W.L. Roberts, and S.M. Sarathy, A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties, Fuel 143 (2015), pp. 290–300. doi: 10.1016/j.fuel.2014.11.022
  • J. Yu, Y. Ju, and X. Gou, Surrogate fuel formulation for oxygenated and hydrocarbon fuels by using the molecular structures and functional groups, Fuel 166 (2016), pp. 211–218. doi: 10.1016/j.fuel.2015.10.085
  • J. Yu, Z. Wang, X. Zhuo, and X. Gou. Surrogate definition and chemical kinetic modeling for two different jet aviation fuels. Energy Fuels 30 (2016), pp. 1375−1382.
  • T. Tsurushima, A new skeletal PRF kinetic model for HCCI combustion, Proc. Combust. Inst. 32 (2009), pp. 2835–2841. doi: 10.1016/j.proci.2008.06.018
  • S. Tanaka, F. Ayala, and J.C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame 133 (2003), pp. 467–481. doi: 10.1016/S0010-2180(03)00057-9
  • J.C.G. Andrae, Development of a detailed kinetic model for gasoline surrogate fuels, Fuel 87 (2008), pp. 2013–2022. doi: 10.1016/j.fuel.2007.09.010
  • H. Machrafi and S. Cavadias, Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation, Combust. Flame 155 (2008), pp. 557–570. doi: 10.1016/j.combustflame.2008.04.022
  • J.C.G. Andrae, T. Brinck, and G.T. Kalghatgi, HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model, Combust. Flame 155 (2008), pp. 696–712. doi: 10.1016/j.combustflame.2008.05.010
  • V. Knop, C. Pera, and F. Duffour, Validation of a ternary gasoline surrogate in a CAI engine, Combust. Flame 160 (2013), pp. 2067–2082. doi: 10.1016/j.combustflame.2013.04.029
  • J.C.G. Andrae and R.A. Head, HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model, Combust. Flame 156 (2009), pp. 842–851. doi: 10.1016/j.combustflame.2008.10.002
  • Y. Wang, M. Yao, and Z. Zheng, A semi-detailed chemical kinetic model of a gasoline surrogate fuel for internal combustion engine applications, Fuel 113 (2013), pp. 347–356. doi: 10.1016/j.fuel.2013.05.076
  • S.W. Benson, F. Cruickshank, D. Golden, G.R. Haugen, H. O’Neal, A. Rodgers, R. Shaw, and R. Walsh, Additivity rules for the estimation of thermochemical properties, Chem. Rev. 69 (1969), pp. 279–324. doi: 10.1021/cr60259a002
  • S.W. Benson and J.H. Buss, Additivity rules for the estimation of molecular properties. Thermodynamic properties, J. Chem. Phys. 29 (1958), pp. 546–572. doi: 10.1063/1.1744539
  • S.H. Won, S. Dooley, P.S. Veloo, H. Wang, M.A. Oehlschlaeger, F.L. Dryer, and Y. Ju, The combustion properties of 2, 6, 10-trimethyl dodecane and a chemical functional group analysis, Combust. Flame 161 (2014), pp. 826–834. doi: 10.1016/j.combustflame.2013.08.010
  • K. Narayanaswamy, P. Pepiot, and H. Pitsch, Jet fuels and Fischer-Tropsch fuels surrogate definition and chemical kinetic modeling, 8th US National Combustion Meeting, Salt Lake City, 2013.
  • A. Violi, S. Yan, E. Eddings, A. Sarofim, S. Granata, T. Faravelli, and E. Ranzi, Experimental formulation and kinetic model for JP-8 surrogate mixtures, Combust. Sci. Technol. 174 (2002), pp. 399–417. doi: 10.1080/00102200215080
  • D. Kim, J. Martz, and A. Violi, A surrogate for emulating the physical and chemical properties of conventional jet fuel, Combust. Flame 161 (2014), pp. 1489–1498. doi: 10.1016/j.combustflame.2013.12.015
  • S.M. Sarathy, C.K. Westbrook, M. Mehl, W.J. Pitz, C. Togbe, P. Dagaut, H. Wang, M.A. Oehlschlaeger, U. Niemann, K. Seshadri, P.S. Veloo, C. Ji, F.N. Egolfopoulos, and T. Lu, Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20, Combust. Flame 158 (2011), pp. 2338–2357. doi: 10.1016/j.combustflame.2011.05.007
  • S.M. Sarathy, T. Javed, F. Karsenty, A. Heufer, W. Wang, S. Park, A. Elwardany, A. Farooq, C.K. Westbrook, W.J. Pitz, M.A. Oehlschlaeger, G. Dayma, H.J. Curran, and P. Dagaut, A comprehensive combustion chemistry study of 2,5-dimethylhexane, Combust. Flame 161 (2014), pp. 1444–1459. doi: 10.1016/j.combustflame.2013.12.010
  • S. Dooley, F.L. Dryer, T.I. Farouk, Y. Ju, S.H. Won, Reduced kinetic models for the combustion of jet propulsion fuels, 51st AIAA Aerospace Sciences Meeting, Grapevine (Dallas/Ft. Worth Region), Texas, 2013 , pp. 7–10.
  • L. Cai and H. Pitsch, Optimized chemical mechanism for combustion of gasoline surrogate fuels, Combust. Flame 162 (2015), pp. 1623–1637. doi: 10.1016/j.combustflame.2014.11.018
  • L. Cai and H. Pitsch, Mechanism optimization based on reaction rate rules, Combust. Flame 161 (2014), pp. 405–415. doi: 10.1016/j.combustflame.2013.08.024
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combust. Flame 129 (2002), pp. 253–280. doi: 10.1016/S0010-2180(01)00373-X
  • K. Narayanaswamy, G. Blanquart, and H. Pitsch, A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame 157 (2010), pp. 1879–1898. doi: 10.1016/j.combustflame.2010.07.009
  • W. Sun, Z. Chen, X. Gou, and Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame 157 (2010), pp. 1298–1307. doi: 10.1016/j.combustflame.2010.03.006
  • Y. Ra and R.D. Reitz, A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels, Combust. Flame 155 (2008), pp. 713–738. doi: 10.1016/j.combustflame.2008.05.002
  • S. Li, S.M. Sarathy, D.F. Davidson, R.K. Hanson, and C.K. Westbrook, Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation, Combust. Flame 162 (2015), pp. 2296–2306. doi: 10.1016/j.combustflame.2015.01.027
  • CHEMKIN-PRO Release 15083, Reaction Design, Inc, San Diego, CA, 2008.
  • W. Wang, Z. Li, M.A. Oehlschlaeger, D. Healy, H.J. Curran, S.M. Sarathy, M. Mehl, W.J. Pitz, and C.K. Westbrook, An experimental and modeling study of the autoignition of 3-methylheptane, Proc. Combust. Inst. 34 (2013), pp. 335–343. doi: 10.1016/j.proci.2012.06.001
  • A.E. Lutz, R.J. Kee, and J.A. Miller, SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Report No. SAND-87-8248, Sandia National Labs, Livermore, CA, 1988.
  • L. Coniglio, H. Bennadji, P. A. Glaude, O. Herbinet, and F. Billaud, Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling – Advances and future refinements, Prog. Energy Combust. Sci. 39 (2013), pp. 340–382. doi: 10.1016/j.pecs.2013.03.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.