228
Views
3
CrossRef citations to date
0
Altmetric
Articles

Analysis and flamelet modelling for laminar pulverised coal combustion considering the wall effect

, , &
Pages 353-375 | Received 07 Dec 2017, Accepted 03 Sep 2018, Published online: 11 Oct 2018

References

  • A. Dreizler and Böhm B., Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions, Proc. Combust. Inst. 35 (2015), pp. 37–64. doi: 10.1016/j.proci.2014.08.014
  • M. Mann, C. Jainski, M. Euler, Böhm B. and A. Dreizler, Transient flame–wall interactions: Experimental analysis using spectroscopic temperature and co concentration measurements, Combust. Flame 161 (2014), pp. 2371–2386. doi: 10.1016/j.combustflame.2014.02.008
  • A. Singh, M. Mann, T. Kissel, Brübach J. and A. Dreizler, Simultaneous measurements of temperature and co concentration in stagnation stabilized flames, Flow Turbul. Combust. 90 (2013), pp. 723–739. doi: 10.1007/s10494-011-9384-6
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, RT Edwards Inc., 2005.
  • P. Pantangi, A. Sadiki, J. Janicka, M. Mann and A. Dreizler, LES of premixed methane flame impinging on the wall using non-adiabatic flamelet generated manifold (FGM) approach, Flow Turbul. Combust.92 (2014), pp. 805–836. doi: 10.1007/s10494-013-9526-0
  • Turbulent non-premixed flames (TNF) workshop (2017). Available at http://www.sandia.gov/TNF/13thWorkshop/TNF13.html. Accessed: 2016-07-28.
  • T. Poinsot, D. Haworth and G. Bruneaux, Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion, Combust. Flame 95 (1993), pp. 118–132. doi: 10.1016/0010-2180(93)90056-9
  • L. Esclapez, P.C. Ma, E. Mayhew, R. Xu, S. Stouffer, T. Lee, H. Wang and M. Ihme, Fuel effects on lean blow-out in a realistic gas turbine combustor, Combust. Flame 181 (2017), pp. 82–99. doi: 10.1016/j.combustflame.2017.02.035
  • R. Garby, L. Selle and T. Poinsot, Large-eddy simulation of combustion instabilities in a variable-length combustor, C. R. Mécanique 341 (2013), pp. 220–229. doi: 10.1016/j.crme.2012.10.020
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy. Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • D. Lee, S. Thakur, J. Wright, M. Ihme and W. Shyy, Characterization of flow field structure and species composition in a shear coaxial rocket GH2/GO2 injector: Modeling of wall heat losses, Endocrinology131 (2011), pp. 2468–75.
  • H. Wu and M. Ihme, Modeling of wall heat transfer and flame/wall interaction a flamelet model with heat-loss effects, in 9th U. S. National Combustion Meeting (2015).
  • P.C. Ma, H. Wu, M. Ihme and J.P. Hickey, A flamelet model with heat-loss effects for predicting wall-heat transfer in rocket engines, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, July, Atlanta, GA, 2017, pp. 2017–4856.
  • X. Wen, K. Luo, H. Jin and J. Fan, Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model, Combust. Theor. Model. 21 (2017), pp. 925–953. doi: 10.1080/13647830.2017.1314552
  • X. Wen, K. Luo, H. Wang, Y. Luo and J. Fan, Analysis of pulverized coal flame stabilized in a 3d laminar counterflow, Combust. Flame 189 (2018), pp. 106–125. doi: 10.1016/j.combustflame.2017.10.021
  • X. Wen, H. Wang, Y. Luo, K. Luo and J. Fan, Evaluation of flamelet/progress variable model for laminar pulverized coal combustion, Phys. Fluids 29 (2017), pp. 083607. doi: 10.1063/1.4999335
  • M. Rieth, F. Proch, Rabaçal M., B. Franchetti, F.C. Marincola and A. Kempf, Flamelet LES of a semi-industrial pulverized coal furnace, Combust. Flame 173 (2016), pp. 39–56. doi: 10.1016/j.combustflame.2016.07.013
  • M. Rieth, A. Clements, Rabaçal M., F. Proch, O. Stein and A. Kempf, Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD, Proc. Combust. Inst. 36 (2017), pp. 2181–2189. doi: 10.1016/j.proci.2016.06.077
  • J. Watanabe and K. Yamamoto, Flamelet model for pulverized coal combustion, Proc. Combust. Inst.35 (2015), pp. 2315–2322. doi: 10.1016/j.proci.2014.07.065
  • J. Watanabe, T. Okazaki, K. Yamamoto, K. Kuramashi and A. Baba, Large-eddy simulation of pulverized coal combustion using flamelet model, Proc. Combust. Inst. 36 (2017), pp. 2155–2163. doi: 10.1016/j.proci.2016.06.031
  • D. Messig, M. Vascellari and C. Hasse, Flame structure analysis and flamelet progress variable modelling of strained coal flames, Combust. Theor. Model. 21 (2017), pp. 700–721. doi: 10.1080/13647830.2017.1290279
  • M. Vascellari, G. Tufano, O. Stein, A. Kronenburg, A. Kempf, A. Scholtissek and C. Hasse, A flamelet/progress variable approach for modeling coal particle ignition, Fuel (2016).
  • R. Knappstein, G. Kuenne, A. Ketelheun, Köser J., L. Becker, S. Heuer, M. Schiemann, V. Scherer, A. Dreizler, A. Sadiki, and J. Janicka, Devolatilization and volatiles reaction of individual coal particles in the context of FGM tabulated chemistry, Combust. Flame 169 (2016), pp. 72–84. doi: 10.1016/j.combustflame.2016.04.014
  • M. Hossain, J. Jones and W. Malalasekera, Modelling of a bluff-body nonpremixed flame using a coupled radiation/flamelet combustion model, Flow Turbul. Combust. 67 (2001), pp. 217–234. doi: 10.1023/A:1015014823282
  • B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier and N. Darabiha, Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combust. Theor. Model.7 (2003), pp. 449–470. doi: 10.1088/1364-7830/7/3/301
  • A. Ketelheun, G. Kuenne and J. Janicka, Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry, Flow Turbul. Combust. 91 (2013), pp. 867–893. doi: 10.1007/s10494-013-9492-6
  • F. Proch and A. Kempf, Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35 (2015), pp. 3337–3345. doi: 10.1016/j.proci.2014.07.036
  • G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song and J.W.C. Gardiner, GRI-Mech version 3.0 (1999).
  • C.T. Crowe, M.P. Sharma and D.E. Stock, The particle-source-in cell (PSI-CELL) model for gas-droplet flows, J. Fluids. Eng. 99 (1977), pp. 325–332. doi: 10.1115/1.3448756
  • B. Franchetti, F.C. Marincola, Navarro-Martinez S. and A. Kempf, Large eddy simulation of a pulverised coal jet flame, Proc. Combust. Inst. 34 (2013), pp. 2419–2426. doi: 10.1016/j.proci.2012.07.056
  • C. Wen and Y. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser. 6 (1966), pp. 100–101.
  • M. Rabacal, B. Franchetti, F.C. Marincola, F. Proch, M. Costa, C. Hasse and A. Kempf, Large eddy simulation of coal combustion in a large-scale laboratory furnace, Proc. Combust. Inst. 35 (2015), pp. 3609–3617. doi: 10.1016/j.proci.2014.06.023
  • W.E. Ranz, Evaporation from drops, Chem. Eng. Prog. 48 (1952), pp. 141.
  • R. Kurose, H. Makino and A. Suzuki, Numerical analysis of pulverized coal combustion characteristics using advanced low-NOx burner, Fuel 83 (2004), pp. 693–703. doi: 10.1016/j.fuel.2003.07.003
  • S. Badzioch and P.G. Hawksley, Kinetics of thermal decomposition of pulverized coal particles, Ind. Eng. Chem. Process Des. Dev. 9 (1970), pp. 521–530. doi: 10.1021/i260036a005
  • D.M. Grant, R.J. Pugmire, T.H. Fletcher and A.R. Kerstein, Chemical model of coal devolatilization using percolation lattice statistics, Energy Fuels 3 (1988), pp. 175–186. doi: 10.1021/ef00014a011
  • O. Stein, G. Olenik, A. Kronenburg, F.C. Marincola, B. Franchetti, A. Kempf, M. Ghiani, M. Vascellari and C. Hasse, Towards comprehensive coal combustion modelling for LES, Flow Turbul. Combust. 90 (2013), pp. 859–884. doi: 10.1007/s10494-012-9423-y
  • S.M. Hwang, R. Kurose, F. Akamatsu, H. Tsuji, H. Makino and M. Katsuki, Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame, Energy Fuels 19 (2005), pp. 382–392. doi: 10.1021/ef049867z
  • X. Wen, Y. Luo, K. Luo, H. Jin and J. Fan, LES of pulverized coal combustion with a multi-regime flamelet model, Fuel 188 (2017), pp. 661–671. doi: 10.1016/j.fuel.2016.10.070
  • N. Hashimoto, R. Kurose, S.M. Hwang, H. Tsuji and H. Shirai, A numerical simulation of pulverized coal combustion employing a tabulated-devolatilization-process model (TDP model), Combust. Flame 159 (2012), pp. 353–366. doi: 10.1016/j.combustflame.2011.05.024
  • M. Baum and P. Street, Predicting the combustion behaviour of coal particles, Combust. Sci. Technol.3 (1971), pp. 231–243. doi: 10.1080/00102207108952290
  • T. Hara, M. Muto, T. Kitano, R. Kurose and S. Komori, Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism, Combust. Flame 162 (2015), pp. 4391–4407. doi: 10.1016/j.combustflame.2015.07.027
  • R. Bilger, The structure of turbulent nonpremixed flames, in Symposium (International) on Combustion, Vol. 22. Elsevier, 1989, pp. 475–488.
  • P. Cheng, Two-dimensional radiating gas flow by a moment method, AIAA J. 2 (1964), pp. 1662–1664. doi: 10.2514/3.2645
  • Özışık M.N., Radiative Transfer and Interactions with Conduction and Convection, Werbel & Peck, 1973.
  • C. Hasse and N. Peters, A two mixture fraction flamelet model applied to split injections in a DI Diesel engine, Proc. Combust. Inst. 30 (2005), pp. 2755–2762. doi: 10.1016/j.proci.2004.08.166
  • Y. Luo, X. Wen, H. Wang, K. Luo, H. Jin and J. Fan, An a priori study of different tabulation methods for turbulent pulverised coal combustion, Combust. Theor. Model. (), pp.–.
  • H. Pitsch, Flamemaster: A C++ computer program for 0D combustion and 1D laminar flame calculations, Cited in (1998), p. 81.
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid. Mech. 504 (2004), pp. 73–97. doi: 10.1017/S0022112004008213
  • X. Wen, K. Luo, Y. Luo, H.I. Kassem, H. Jin and J. Fan, Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model, Appl. Energy 183 (2016), pp. 1086–1097. doi: 10.1016/j.apenergy.2016.09.034
  • X.Y. Zhao and D.C. Haworth, Transported PDF modeling of pulverized coal jet flames, Combust. Flame 161 (2014), pp. 1866–1882. doi: 10.1016/j.combustflame.2013.12.024
  • M. Ihme and Y.C. See, Les flamelet modeling of a three-stream mild combustor: Analysis of flame sensitivity to scalar inflow conditions, Proc. Combust. Inst. 33 (2011), pp. 1309–1317. doi: 10.1016/j.proci.2010.05.019
  • H.G. Weller, G. Tabor, H. Jasak and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12 (1998), pp. 620–631. doi: 10.1063/1.168744
  • A. Scholtissek, W.L. Chan, H. Xu, F. Hunger, H. Kolla, J.H. Chen, M. Ihme and C. Hasse, A multi-scale asymptotic scaling and regime analysis of flamelet equations including tangential diffusion effects for laminar and turbulent flames, Combust. Flame 162 (2015), pp. 1507–1529. doi: 10.1016/j.combustflame.2014.11.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.