257
Views
5
CrossRef citations to date
0
Altmetric
Articles

Combustion of a rapidly initiated fully dense nanocomposite Al–CuO thermite powder

, & ORCID Icon
Pages 651-673 | Received 04 May 2018, Accepted 09 Feb 2019, Published online: 27 Feb 2019

References

  • Y. Chen, F.V. Lawrence, C.P.L. Barkan, and J.A. Dantzig, Heat transfer modelling of rail thermite welding, Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit, 220(3) (2006), pp. 207–217. doi: 10.1243/09544097F01505
  • K. Honda, et al., New thermite welding repair technology: high strength gunned body and high safety structure, Taikabutsu 65 (2013), pp. 439–442. (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.).
  • C.A.C. Lloyd, A method for joining metals by thermite welding, in Patent ZA2013002126A (2013), Thermitrex Pty Limited, S. Africa. p. 22.
  • G.T. Sutherland, P.J. Miller, and H.W. Sandusky, Ordnance warheads with thermite heating-induced dispersal of molten metal charges, The United States of America as Represented by the Secretary of the Navy, USA, 2006, p. 6.
  • E.L. Dreizin and M. Schoenitz, Mechanochemically prepared reactive and energetic materials: a review, J. Mater. Sci. 52(20) (2017), pp. 11789–11809. doi: 10.1007/s10853-017-0912-1
  • E.L. Dreizin, Metal-based reactive nanomaterials, Prog. Energy Combust. Sci. 35(2) (2009), pp. 141–167. doi: 10.1016/j.pecs.2008.09.001
  • R.A. Yetter, G.A. Risha, and S.F. Son. Metal Particle Combustion and Nanotechnology, Montreal, 2009.
  • D. Sundaram, V. Yang, and R.A. Yetter, Metal-based nanoenergetic materials: Synthesis, properties, and applications, Prog. Energy Combust. Sci. 61 (2017) pp. 293–365. doi: 10.1016/j.pecs.2017.02.002
  • A. Gromov, et al., Nanometals in energetic systems: achievements and future, Int. J. Energ. Mater. Chem. Propul. 13 (2014), pp. 399–419. (Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.).
  • L.C. Yang, Ignition transfer effectiveness from primers to physically separated pyrotechnic boosters. in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013.
  • S.J. Apperson, et al., Characterization of nanothermite material for solid-fuel microthruster applications, J. Propuls. Power 25(5) (2009), pp. 1086–1091. doi: 10.2514/1.43206
  • K.T. Sullivan, et al., In situ microscopy of rapidly heated nano-Al and nano- Al/ WO3 thermites, Appl. Phys. Lett. 97(13) (2010). doi: 10.1063/1.3490752
  • K.T. Sullivan, et al., Reactive sintering: An important component in the combustion of nanocomposite thermites, Combust. Flame 159(1) (2012), pp. 2–15. doi: 10.1016/j.combustflame.2011.07.015
  • Sullivan, K.T., et al., Quantifying dynamic processes in reactive materials: An extended burn tube test, Propellants Explos. Pyrotechn. 40(3) (2015), pp. 394–401. doi: 10.1002/prep.201400267
  • Dreizin, E.L., et al., Particle combustion dynamics of metal-based reactive materials, Int. J. Energ. Mater. Chem. Propuls. 10(4) (2011), pp. 297–319.
  • I. Monk, M. Schoenitz, and E.L. Dreizin, Modes of ignition of powder layers of nanocomposite thermites by electrostatic discharge, J. Energ. Mater. 35(1) (2016), pp. 29–43. doi: 10.1080/07370652.2016.1150366
  • I. Monk, et al., Electro-static discharge ignition of monolayers of nanocomposite thermite powders prepared by arrested reactive milling, Combust. Sci. Technol. 187(8) (2015), pp. 1276–1294. doi: 10.1080/00102202.2015.1035373
  • I. Monk, M. Schoenitz, and E.L. Dreizin, The effect of heating rate on combustion of fully dense nanocomposite thermite particles, Combust. Sci. Technol., 190(2) (2018), pp. 203–221.
  • D. Stamatis, A. Ermoline, and E.L. Dreizin, A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders, Combust. Theory Model. 16(6) (2012), pp. 1011–1028. doi: 10.1080/13647830.2012.694480
  • R.A. Williams, M. Schoenitz, and E.L. Dreizin, Validation of the thermal oxidation model for Al/CuO nanocomposite powder, Combust. Sci. Technol., 186(1) (2014), pp. 47–67. doi: 10.1080/00102202.2013.846330
  • A. Atkinson, Transport processes during the growth of oxide films at elevated temperature, Rev. Mod. Phys. 57(2) (1985), pp. 437–470. doi: 10.1103/RevModPhys.57.437
  • F.P. Fehlner and N.F. Mott, Low-temperature oxidation, Oxid. Metals, 2(1) (1970), pp. 59–99. doi: 10.1007/BF00603582
  • M.A. Trunov, et al., Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders, Combust. Flame 140(4) (2005), pp. 310–318. doi: 10.1016/j.combustflame.2004.10.010
  • M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles, Combust. Theory Model. 10(4) (2006), pp. 603–623. doi: 10.1080/13647830600578506
  • A. Ermoline, D. Stamatis, and E.L. Dreizin, Low-temperature exothermic reactions in fully dense Al-CuO nanocomposite powders, Thermochimica Acta 527 (2012), pp. 52–58. doi: 10.1016/j.tca.2011.10.002
  • I. Monk, et al., Combustion characteristics of stoichiometric Al-CuO nanocomposite thermites prepared by different methods, Combust. Sci. Technol. 189(3) (2017), pp. 555–574. doi: 10.1080/00102202.2016.1225731
  • S. Mohan, M.A. Trunov, and E.L. Dreizin, Heating and ignition of metal particles in the transition heat transfer regime. J. Heat Transf. 130(10) (2008). doi: 10.1115/1.2945881
  • S.L. Vummidi, et al. Characterization of fine aluminum powder coated with nickel as a potential fuel additive, Orlando, FL, 2010.
  • L.P.H. Jeurgens, et al., Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin Solid Films 418(2) (2002), pp. 89–101. doi: 10.1016/S0040-6090(02)00787-3
  • Wright, P.G., On the discontinuity involved in diffusion across an interface (the δ of Fuchs), Discuss. Faraday Soc. 30 (1960), pp. 100–112. doi: 10.1039/df9603000100
  • N.A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere, Geofisica Pura e Applicata 56(1) (1963), pp. 185–193. doi: 10.1007/BF01993343

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.