260
Views
8
CrossRef citations to date
0
Altmetric
Articles

A redox reaction model for self-heating and aging prediction of Al/CuO multilayers

, , , , , & ORCID Icon show all
Pages 700-715 | Received 07 Aug 2018, Accepted 22 Jan 2019, Published online: 05 Mar 2019

References

  • G. Taton, D. Lagrange, V. Conedera, L. Renaud, and C. Rossi, Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane, J. Micromechanics Microengineering 23 (2013), p. 105009. doi: 10.1088/0960-1317/23/10/105009
  • J.Y. Ahn, S.B. Kim, J.H. Kim, N.S. Jang, D.H. Kim, H.W. Lee, J.M. Kim, S.H. Kim, A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform. J. Micromechanics Microengineering 26 (2016), pp. 015002. doi: 10.1088/0960-1317/26/1/015002
  • P. Zhu, R. Shen, Y. Ye, S. Fu, and D. Li, Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications, J. Appl. Phys. 113 (2013), p. 184505. doi: 10.1063/1.4804315
  • N.A. Manesh, S. Basu and R. Kumar, Experimental flame speed in multi-layered nano-energetic materials, Combust. Flame 157 (2010), pp. 476–480. doi: 10.1016/j.combustflame.2009.07.011
  • J. Kwon, J.M. Ducéré, P. Alphonse, M. Bahrami, M. Petrantoni, J.-F. Veyanet, C. Tenailleau, A. Estève, C. Rossi, Y.J. Chabal, Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction. ACS Appl. Mater. Interfaces 5 (2013), pp. 605–613. doi: 10.1021/am3019405
  • I. Abdallah, J. Zapata, G. Lahiner, B. Warot-Fonrose, J. Cure, Y. Chabal, A. Estève, C. Rossi, Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers. ACS Appl. Energy Mater. 1 (2018), pp. 1762–1770. doi: 10.1021/acsaem.8b00296
  • L. Marin, C.E. Nanayakkara, J.-F. Veyan, B. Warot-Fonrose, S. Joulie, A. Esteve, C. Tenailleau, Y.J. Chabal, C. Rossi, Enhancing the reactivity of Al/CuO nanolaminates by Cu incorporation at the interfaces. ACS Appl. Mater. Interfaces 7 (2015), pp. 11713–11718. doi: 10.1021/acsami.5b02653
  • S.M. Umbrajkar, M. Schoenitz, and E.L. Dreizin, Exothermic reactions in Al–CuO nanocomposites, Thermochim Acta 451 (2006), pp. 34–43. doi: 10.1016/j.tca.2006.09.002
  • H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957), pp. 1702–1706. doi: 10.1021/ac60131a045
  • K.J. Blobaum, A.J. Wagner, J.M. Plitzko, D. Van Heerden, D.H. Fairbrother, and T.P. Weihs, Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils, J. Appl. Phys. 94 (2003), p. 2923. doi: 10.1063/1.1598297
  • M. Fathollahi, S.M. Pourmortazavi and S.G. Hosseini, Particle size effects on thermal decomposition of energetic material, J. Energ. Mater. 26 (2007), pp. 52–69. doi: 10.1080/07370650701719295
  • P.E. Sánchez-Jiménez, J.M. Criado, and L.A. Pérez-Maqueda, Kissinger kinetic analysis of data obtained under different heating schedules, J. Therm. Anal. Calorim. 94 (2008), pp. 427–432. doi: 10.1007/s10973-008-9200-2
  • A. Khawam and D.R. Flanagan, Solid-state kinetic models:  Basics and mathematical fundamentals, J Phys Chem B 110 (2006), pp. 17315–17328. doi: 10.1021/jp062746a
  • B.E. Deal and A.S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36 (1965), pp. 3770–3778. doi: 10.1063/1.1713945
  • G. Lahiner, A. Nicollet, J. Zapata, L. Marín, N. Richard, M.D. Rouhani, C. Rossi, A. Estève, A diffusion–reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films. J. Appl. Phys 122 (2017), pp. 155105. doi: 10.1063/1.5000312
  • M. Petrantoni, C. Rossi, L. Salvagnac, V. Conédéra, A. Estève, C. Tenailleau, P. Alphonse, and Y.J. Chabal, Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro, J. Appl. Phys. 108 (2010), p. 084323. doi: 10.1063/1.3498821
  • J. Li, J. Mayer, and K. Tu, Nucleation and growth of Cu2O in the reduction of CuO thin films, Phys. Rev. B Condens. Matter 45 (1992), pp. 5683–5686. doi: 10.1103/PhysRevB.45.5683
  • M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles, Combust. Theory Model. 10 (2006), pp. 603–623. doi: 10.1080/13647830600578506
  • T.W. Simpson, Q. Wen, N. Yu, and D.R. Clarke, Kinetics of the amorphous →γ→α transformations in aluminum oxide: effect of crystallographic orientation, J. Am. Ceram. Soc. 81 (1998), pp. 61–66. doi: 10.1111/j.1151-2916.1998.tb02296.x
  • M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Ignition of aluminum powders under different experimental conditions, Propellants Explos. Pyrotech. 30 (2005), pp. 36–43. doi: 10.1002/prep.200400083
  • D. Stamatis, A. Ermoline, and E.L. Dreizin, A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders, Combust. Theory Model. 16 (2012), pp. 1011–1028. doi: 10.1080/13647830.2012.694480
  • T. Nabatame, T. Yasuda, M. Nishizawa, M. Ikeda, T. Horikawa, and A. Toriumi, Comparative studies on oxygen diffusion coefficients for amorphous and γ-Al2O3 films using 18O isotope, Jpn. J. Appl. Phys. 42 (2003), p. 7205. doi: 10.1143/JJAP.42.7205
  • A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-Rouhani, A. Esteve, C. Rossi, Investigation of Al/CuO multilayered thermite ignition. J. Appl. Phys 121 (2017), pp. 034503. doi: 10.1063/1.4974288
  • A. Nicollet, L. Salvagnac, V. Baijot, A. Estève, C. Rossi, Fast circuit breaker based on integration of Al/CuO nanothermites. Sens. Actuators Phys. 273 (2018), pp. 249–255. doi: 10.1016/j.sna.2018.02.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.