300
Views
5
CrossRef citations to date
0
Altmetric
Articles

Large-eddy simulation of a bluff-body stabilised nonpremixed flame with radiation heat transfer

, , &
Pages 632-649 | Received 13 Aug 2019, Accepted 28 Jan 2020, Published online: 14 Feb 2020

References

  • A. Gupta, D.C. Haworth, and M.F. Modest, Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous non premixed flames, Proc. Combust. Inst. 34 (2013), pp. 1281–1288. doi: 10.1016/j.proci.2012.05.052
  • P.J. Coelho, Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows, Combust. Flame 156 (2009), pp. 1099–1110. doi: 10.1016/j.combustflame.2008.10.006
  • P.J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows, Prog. Energy Combust. Sci. 33 (2007), pp. 311–383. doi: 10.1016/j.pecs.2006.11.002
  • P.J. Coelho, Turbulence-radiation interaction: from theory to application in numerical simulations, J. Heat Transfer 134 (2012), 031001. doi: 10.1115/1.4005130
  • R. Vicquelin, Y.F. Zhang, O. Gicquel, and J. Taine, Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations, J. Fluid Mech. 753 (2014), pp. 360–401. doi: 10.1017/jfm.2014.368
  • S. Silvestri, A. Patel, D. Roekaerts, and R. Pecnik, Turbulence radiation interaction in channel flow with various optical depths, J. Fluid Mech. 834 (2018), pp. 359–384. doi: 10.1017/jfm.2017.738
  • S. Silvestri, D. Roekaerts, and R. Pecnik, Assessing turbulence-radiation interactions in turbulent flows of non-gray media, J. Quant. Spectrosc. Radiat. Heat Transf. 233 (2019), pp. 134–148. doi: 10.1016/j.jqsrt.2019.05.018
  • S. Ghosh, R. Friedrich, M. Pfitzner, C. Stemmer, B. Cuenot, and M. El Hafi, Effects of radiative heat transfer on the structure of turbulent supersonic channel flow, J. Fluid Mech. 677 (2011), pp. 417–444. doi: 10.1017/jfm.2011.92
  • M. Roger, C.B. da Silva, and P.J. Coelho, Relevance of the subgrid-scales for large eddy simulations of turbulence-radiation interactions in a turbulent plane jet, J. Quant. Spectrosc. Radiat. Transf. 112 (2011), pp. 1250–1256. doi: 10.1016/j.jqsrt.2010.08.026
  • G. Fraga, F. Centeno, A. Petry, and F. França, Evaluation and optimization-based modification of a model for the mean radiative emission in a turbulent non-reactive flow, Int. J. Heat Mass Transf. 114 (2017), pp. 664–674. doi: 10.1016/j.ijheatmasstransfer.2017.06.038
  • A. Gupta, M.F. Modest, and D.C. Haworth, Large-eddy simulation of turbulence-radiation interactions in a turbulent planar channel flow, ASME J. Heat Transf. 131(6) (2009), p. 061704. doi: 10.1115/1.3085875
  • S. Mazumder and M.F. Modest, A probability density function approach to modeling turbulence-radiation interactions in nonluminous flames, Int. J. Heat Mass Transf. 42 (1999), pp. 971–991. doi: 10.1016/S0017-9310(98)00225-7
  • G. Li and M.F. Modest, Importance of turbulence-radiation interactions in turbulent diffusion jet flames, J. Heat Transfer 125 (2003), pp. 831–838. doi: 10.1115/1.1597621
  • A. Wang, M.F. Modest, D.C. Haworth, and L. Wang, Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames, J. Quant. Spectrosc. Radiat. Transf. 109 (2008), pp. 269–279. doi: 10.1016/j.jqsrt.2007.08.030
  • G. Pal, A. Gupta, M.F. Modest, and D.C. Haworth, Comparison of accuracy and computational expense of radiation models in simulation of non-premixed turbulent jet flames, Combust. Flame 162 (2015), pp. 2487–2495. doi: 10.1016/j.combustflame.2015.02.017
  • P.J. Coelho, J. Teerling, and D. Roekaerts, Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame, J. Heat Transfer 133 (2003), pp. 75–91.
  • X. Xu, Y.L. Chen, and H. Wang, Detailed numerical simulation of thermal radiation influence in Sandia flame D, J. Heat Mass Transf. 49 (2006), pp. 2347–2355. doi: 10.1016/j.ijheatmasstransfer.2005.11.017
  • A. Habibi, B. Merci, and D. Roekaerts, Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames, Combust. Flame 151 (2007), pp. 303–320. doi: 10.1016/j.combustflame.2007.06.003
  • L. Tesse, F. Dupoiriex, and J. Taine, Monte Carlo modeling of radiative transfer in a turbulent sooty flame, Int. J. Heat Mass Transf. 47 (2004), pp. 555–572. doi: 10.1016/j.ijheatmasstransfer.2003.06.003
  • R. Mehta, M.F. Modest, and D. Haworth, Radiation characteristics and turbulence-radiation interactions insooting turbulent jet flames, Combust. Theory Model. 14 (2010), pp. 105–124. doi: 10.1080/13647831003660529
  • P. Rodrigues, O. Gicquel, B. Franzelli, N. Darabiha, and R. Vicquelin, Analysis of radiative transfer in a turbulent sooting jet flame using a monte carlo method coupled to large eddy simulation, J. Quant. Spectrosc. Radiat. Transf. 235 (2019), pp. 187–203. doi: 10.1016/j.jqsrt.2019.07.003
  • A.J. Chandy, D.J. Glaze, and S.H. Frankel, A hybrid large eddy simulation/filtered mass density function for the calculation of strongly radiating turbulent flames, ASME J. Heat Transf. 131 (2009). doi: 10.1115/1.3082405
  • J.L. Consalvi, F. Nmira, and W. Kong, On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames, J. Quant. Spectrosc. Radiat. Transf. 221 (2018), pp. 51–60. doi: 10.1016/j.jqsrt.2018.09.020
  • F.C. Miranda, P.J. Coelho, F. di Mare, and J. Janicka, Study of turbulence-radiation interactions in large-eddy simulation of scaled Sandia flame D, J. Quant. Spectrosc. Radiat. Transf. 228 (2019), pp. 47–58. doi: 10.1016/j.jqsrt.2019.02.010
  • Bluff-body flows and flames, Available at http://web.aeromech.usyd.edu.au/thermofluids/bluff.php. Accessed on February 8th 2018.
  • B. Dally, A. Masri, R.S. Barlow, and G.J. Fiechtner, Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames, Combust. Flame 114 (1998), pp. 119–148. doi: 10.1016/S0010-2180(97)00280-0
  • J. Smagorinsky, General circulation experiments with the primitive equations, 1. The basic experiment, Mon. Weather Rev. 91 (1963), pp. 99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • F.C. Miranda, Large eddy simulation of turbulent reacting flows with radiative heat transfer, Ph.D. thesis, Darmstadt, 2018.
  • J. van Oijen and L. de Goey, Modelling of premixed laminar flames using FGM, Combust. Sci. Technol. 161 (2000), pp. 113–137. doi: 10.1080/00102200008935814
  • N. Peters, Laminar diffusion flamelets in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10(3) (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • A. Ketelheun, C. Olbricht, F. Hahn, and J. Janicka, Premixed generated manifolds for the computation of technical combustion systems, Proceedings of ASME Turbo Expo 2009, Orlando, Florida, USA, 2009.
  • Chem1D – A one-dimensional laminar flame code, http://www.combustion.tue.nl/chem1d. Accessed: June 6th 2017.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, Jr., V.V. Lissianski, and Z. Qin, GRI-Mech 3.0, 1999. Available at www.me.berkeley.edu/gri_mech.
  • R. Knappstein, G. Kuenne, A. Ketelheun, J. Koser, L. Becker, S. Heuer, M. Schiemann, V. Scherer, A. Dreizler, A. Sadiki, and J. Janicka, Devolatilization and volatiles reaction of individual coal particles in the context of FGM tabulated chemistry, Combust. Flame 169 (2016), pp. 72–84. doi: 10.1016/j.combustflame.2016.04.014
  • A. Avdic, G. Kuenne, F. di Mare, and J. Janicka, LES combustion modeling using Eulerian stochastic flied method coupled with tabulated chemistry, Combust. Flame 175 (2017), pp. 201–219. doi: 10.1016/j.combustflame.2016.06.015
  • L. Valino, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turbul. Combust. 60 (1998), pp. 157–172. doi: 10.1023/A:1009968902446
  • W.P. Jones and S. Navarro-Martinez, Numerical study of n-heptane auto-ignition using LES-PDF methods, Flow Turbul. Combust. 83 (2009), pp. 407–423. doi: 10.1007/s10494-009-9228-9
  • P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
  • A. Avdic, Development and application of numerical methods for the simulation of advanced combustion processes within complex devices, Ph.D. thesis, Darmstadt, 2014.
  • M. Modest and D. Haworth, Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications. 1st ed. Springer Briefs in Applied Sciences and Technology, Cham, 2016.
  • P.J. Coelho, Detailed numerical simulation of radiative transfer in nonluminous turbulent jet diffusion flame, Combust. Flame 136 (2004), pp. 481–492. doi: 10.1016/j.combustflame.2003.12.003
  • V. Kez, F. Liu, J.L. Consalvi, J. Strohle, and B. Epple, A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle, J. Quant. Spectrosc. Radiat. Transf. 172 (2016), pp. 121–133. doi: 10.1016/j.jqsrt.2015.11.002
  • V. Kez, J.L. Consalvi, J. Strohle, and B. Epple, Assessment of several gas radiation models for radiative heat transfer calculations in a three-dimensional oxy-fuel furnace under coal-fired conditions, Int. J. Thermal Sci. 120 (2017), pp. 289–302. doi: 10.1016/j.ijthermalsci.2017.06.017
  • M. Bordbar, G. Wecel, and T. Hyppänen, A line by line based weighted sum of gray gases model for inhomogeneous CO2−H2O mixture in oxy-fired combustion, Combust. Flame 161 (2014), pp. 2435–2445. doi: 10.1016/j.combustflame.2014.03.013
  • T. Lehnhäuser and M. Schäfer, Improved linear interpolation practice for finite volume schemes on complex grids, J. Numer. Methods Fluids 38 (2002), pp. 625–645. doi: 10.1002/fld.232
  • G. Zhou, L. Davidson, and E. Olsson, Transonic inviscid/turbulent airfoil flow simulation using a pressure based method with high order schemes, Fourteenth International Conference on Numerical Methods in Fluid Dynamics, Springer, Berlin, Heidelberg, 1995, pp. 372–378.
  • G.D. Raithby and E.H. Chui, A finite-volume method for predicting a radiant heat transfer in enclosures with participating media, J. Heat Transfer 112 (1990), pp. 415–423. doi: 10.1115/1.2910394
  • S.H. Kim and K.Y. Huh, A new angular discretization scheme of the finite volume method for 3-D radiative heat transfer in absorbing, emitting and anisotropically scattering media, Int. J. Heat Mass Transf. 43 (2000), pp. 1233–1242. doi: 10.1016/S0017-9310(99)00211-2
  • F.C. Miranda, F. di Mare, A. Sadiki, and J. Janicka, Performance analysis of different solvers for computing the radiative transfer equation in complex geometries using finite volume method and block structured grids, Comput. Thermal Sci. 9 (2017), pp. 269–282. doi: 10.1615/ComputThermalScien.2017019001
  • T. Kuan and R. Lindstedt, Transported probability density function modeling of a bluff-body stabilized turbulent flame, Proc. Combust. Inst. 30 (2005), pp. 767–774. doi: 10.1016/j.proci.2004.08.079
  • A. Kempf, R. Lindstedt, and J. Janicka, Large-eddy simulation of a bluff-body stabilized non-premixed flame, Combust. Flame 144 (2006), pp. 170–189. doi: 10.1016/j.combustflame.2005.07.006
  • A. Kempf, Large eddy simulation of non premixed turbulent flames, Ph.D. thesis, Darmstadt, 2004.
  • D. Jesch, Large eddy simulation of turbulent combustion: A novel multivariate probability density function approach, Ph.D. thesis, Darmstadt, 2016.
  • M. Klein, A. Sadiki, and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys. 186 (2003), pp. 652–665. doi: 10.1016/S0021-9991(03)00090-1
  • S. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6 (2004), pp. 1–24. doi: 10.1088/1367-2630/6/1/035
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • C. Olbricht, Numerische berechnung technischer verbrennungssysteme, Ph.D. diss., TU Darmstadt, 2008.
  • V. Raman, H. Pitsch, and R.O. Fox, Hybrid large-eddy simulation/lagrangian filtered-density-function approach for simulating turbulent combustion, Combust. Flame 143 (2005), pp. 56–78. doi: 10.1016/j.combustflame.2005.05.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.