207
Views
6
CrossRef citations to date
0
Altmetric
Articles

REDIM reduced chemistry for the simulation of counterflow diffusion flames with oscillating strain rates

ORCID Icon, &
Pages 682-704 | Received 20 Aug 2019, Accepted 26 Feb 2020, Published online: 09 Mar 2020

References

  • F.E.C Culick, M.V. Heitor, and J. Whitelaw, Unsteady combustion, AIAA J. 35(5) (1997), pp. 920. doi: 10.2514/2.7470
  • H.Ax.P. Kutne, W. Meier, K. Koenig, U. Maas, A. Class, and M. Aigner, Low pressure premixed CH4/air flames with forced periodic mixture fraction oscillations: experimental approach, Appl. Phys. B 94 (2009), pp. 705–714. doi: 10.1007/s00340-009-3372-8
  • C.J. Sung, J.B. Liu, and C.K. Law, Structural response of counterflow diffusion flames to strain rate variations, Combust. Flame. 102 (1995), pp. 481–492. doi: 10.1016/0010-2180(95)00041-4
  • T.M. Brown, R.W. Pitz, and C.J. Sung, Oscillatory stretch effects on the structure and extinction of counterflow diffusion flames, Symp. (Int.) Combust. 27 (1998), pp. 703–710. doi: 10.1016/S0082-0784(98)80463-3
  • K. Koenig, V. Bykovm, and U. Maas, Investigation of the dynamical response of methane/Air counterflow flames to inflow mixture composition and flow field perturbations, Flow Turbulence Combust. 83(1) (2009), pp. 105–129. doi: 10.1007/s10494-008-9191-x
  • N. Darabiha, Transient behaviors of laminar counterflow hydrogen-Air diffusion flames with complex chemistry, Combust. Sci. Technol. 86 (1992), pp. 163–181. doi: 10.1080/00102209208947193
  • F.N. Egolfopoulos and C.S. Campbell, Unsteady counterflowing strained diffusion flames: diffusion-limited frequency response, J. Fluid Mech. 318 (1996), pp. 1–29. doi: 10.1017/S0022112096007008
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Frequency response of counter flow diffusion flames to strain rate harmonic oscillations, Combust. Sci. Technol. 180 (2008), pp. 767–784. doi: 10.1080/00102200801893838
  • D.A. Goussis and U. Maas, Model reduction for combustion chemistry, in Turbulent Combustion Modeling, Springer, Dordrecht, 2011, pp. 193–220.
  • U. Maas and A.S. Tomlin, Time-scale splitting-based mechanism reduction, in Cleaner Combustion, Springer, London, 2013, pp. 467–484.
  • A.S. Tomlin, T. Turányi, and M.J. Pilling, Mathematical tools for the construction, investigation and reduction of combustion mechanisms, Compr. Chem. Kinet. 35 (1997), pp. 293–437. doi: 10.1016/S0069-8040(97)80019-2
  • T. Turanyi and A.S. Tomlin, Analysis of kinetic reaction mechanisms, Berlin, Springer, 2014.
  • S.G. Davis and C.K.. Law, Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames, Symp. (Int.) Combust. 27 (1998), pp. 521–527. doi: 10.1016/S0082-0784(98)80442-6
  • S.M. Sarathy, M.J. Thomson, W.J. Pitz, and T.F. Lu, An experimental and kinetic modeling study of methyl decanoate combustion, Proc. Combust. Inst. 33(1) (2011), pp. 399–405. doi: 10.1016/j.proci.2010.06.058
  • K.E. Niemeyer, C. Sung, and M.P. Raju, Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis, Combust. Flame. 157(1) (2010), pp. 1760–1770. doi: 10.1016/j.combustflame.2009.12.022
  • W. Liu, A.P. Kelley, and C.K. Law, Non-premixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate, Proc. Combust. Inst. 33(1) (2011), pp. 995–1002. doi: 10.1016/j.proci.2010.05.084
  • Z.Y. Luo, T.F. Lu, M.J. Maciaszek, S. Som, and D.E. Longman, A reduced mechanism for high-temperature oxidation of biodiesel surrogates, Energy Fuels 4(12) (2010), pp. 6283–6293. doi: 10.1021/ef1012227
  • H. Wang, K. Luo, and J. Fan, Direct numerical simulation and conditional statistics of hydrogen/air turbulent premixed flames, Energy Fuels 27 (2013), pp. 549–560. doi: 10.1021/ef301699a
  • E.R. Hawkes, R. Sankaran, J.C. Sutherland, and J.H. Chen, Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models, J. Phys.: Confer. Ser. 16 (2005), pp. 65–79.
  • I.M. Hong and J.H. Chen, chemical response of methane/air diffusion flames to unsteady strain rate, Combust. Flame. 118 (1999), pp. 204–212. doi: 10.1016/S0010-2180(98)00153-9
  • D. Cecere, E. Giacomazzi, N.M. Arcidiacono, and F.R. Picchia, Direct numerical simulation of a turbulent lean premixed CH4/H2 air slot flame, Combust. Flame. 165 (2016), pp. 384–401. doi: 10.1016/j.combustflame.2015.12.024
  • T. Echekki and J.H. Chen, unsteady strain rate and curvature effects in turbulent premixed methane-air flames, Combust. Flame. 106 (1996), pp. 184–202. doi: 10.1016/0010-2180(96)00011-9
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Energy and Combustion Science¡/DIFdel¿Prog. Energy. Combust. Sci. 10(3) (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • N. Peters, Laminar flamelet concepts in turbulent combustion, Symp. (Int.) on Combust. 21(1) (1988), pp. 1231–1250. doi: 10.1016/S0082-0784(88)80355-2
  • E.J. Welle, W.L. Roberts, C.S. Campbell, and J.M. Donbar, The response of a propane-air counterflow diffusion flame subjected to a transient flow field, Combust. Flame. 135 (2003), pp. 285–297. doi: 10.1016/S0010-2180(03)00167-6
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame. 88 (1992), pp. 239–264. doi: 10.1016/0010-2180(92)90034-M
  • A.N. Gorban and I.V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci. 58(21) (2003), pp. 4751–4768. doi: 10.1016/j.ces.2002.12.001
  • V. Bykov and U. Maas, The extension of the ILDM concept to reaction diffusion manifolds, Combust. Theory Model. 11(6) (2007), pp. 839–862. doi: 10.1080/13647830701242531
  • O. Gicquel, N. Darabiha, and D. Thevenin, Luminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28(2) (2000), pp. 1901–1908. doi: 10.1016/S0082-0784(00)80594-9
  • J.A. Van Oijen and L.P.H. De Goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Technol. 161(1) (2000), pp. 113–137. doi: 10.1080/00102200008935814
  • P.D. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame. 157(1) (2010), pp. 43–61. doi: 10.1016/j.combustflame.2009.07.008
  • S.H. Lam and D.A. Goussis, The CSP method for simplifying kinetics, Journal of Chemical Kinetics¡/DIFdel¿Int. J. Chem. Kinet. 26(4) (1994), pp. 461–486. doi: 10.1002/kin.550260408
  • M. Ihme and Y.C. See, Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model, Combust. Flame. 157(10) (2010), pp. 1850–1862. doi: 10.1016/j.combustflame.2010.07.015
  • A. Vasavan, P. de Goey, and J. van Oijen, A novel method to automate FGM progress variable with application to ignition combustion systems, Combustion Theory and Modelling doi: 10.1080/13647830.2019.1673902
  • P.H. de Almeida Konzen, T. Richter, U. Riedel, and U. Maas, Implementation of REDIM reduced chemistry to model an axisymmetric laminar diffusion methane–air flame, Combust. Theory Model.15(3) (2011), pp. 299–323. doi: 10.1080/13647830.2010.538721
  • V. Bykov, A. Neagos, and U. Maas, On transient behavior of non-premixed counterflow diffusion flames within the REDIM based model reduction concept, Proc. Combust. Inst. 34(1) (2013), pp. 197–203. doi: 10.1016/j.proci.2012.06.073
  • A. Neagos, V. Bykov, and U. Maas, Study of extinction limits of diluted hydrogen-air counterflow diffusion flames with the redim method, Combust. Sci. Technol. 186(10–11) (2014), pp. 1502–1516. doi: 10.1080/00102202.2014.935125
  • R. De Meester, B. Naud, U. Maas, and B. Merci, Transported scalar PDF calculations of a swirling bluff body flame (‘SM1’) with a reaction diffusion manifold, Combust. Flame.159(7) (2012), pp. 2415–2429. doi: 10.1016/j.combustflame.2012.01.026
  • P. Wang, F. Zieker, R. Schiessl, N. Platova, J. Froehlich, and U. Maas, Large eddy simulations and experimental studies of turbulent premixed combustion near extinction, Proc. Combust. Inst. 34(1) (2013), pp. 1269–1280. doi: 10.1016/j.proci.2012.06.149
  • C. Yu, F. Minuzzi, and U. Maas, Numerical simulation of turbulent flames based on a hybrid RANS/transported-PDF method and REDIM method, Eur. Chem.-Technol. J. 20(1) (2018), pp. 23–31. doi: 10.18321/ectj705
  • C. Yu, V. Bykov, and U. Maas, Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames, Proc. Combust. Inst. 37(2) (2018), pp. 2183–2190. doi: 10.1016/j.proci.2018.05.126
  • G. Stahl and J. Warnatz, Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets, Combust. Flame. 85(3-4) (1991), pp. 285–299. doi: 10.1016/0010-2180(91)90134-W
  • J. Warnatz, U. Maas, and R.W. Dibble, Combustion: physical and chemical fundamentals, modeling and simulations, experiments, pollutant formation, Springer, Berlin, 1996.
  • U. Maas and S.B. Pope, Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds, Symp. (Int.) Combust. 25(1) (1994), pp. 1349–1356. doi: 10.1016/S0082-0784(06)80777-0
  • G.H. Golub and C.F. van Loan, Matrix computation, The Hopkins University Press, Baltimore, 1989.
  • R.S. Barlow, J.H. Frank, A.N. Karpetis, and J. -Y. Chen, Piloted methane/Air jet flames: scalar structure and transport effects, Combust. Flame. 143 (2005), pp. 433–449. doi: 10.1016/j.combustflame.2005.08.017
  • H. Pitsch, Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames, Combust. Flame. 123(3) (2000), pp. 358–374. doi: 10.1016/S0010-2180(00)00135-8
  • H. Pitsch and H. Steiner, Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D), Phys. Fluids 12(10) (2000), pp. 2541–2554. doi: 10.1063/1.1288493
  • A. Kronenburg and A.E. Papoutsakis, Conditional moment closure modeling of extinction and re-ignition in turbulent non-premixed flames, Proc. Combust. Inst. 30 (2005), pp. 759–766. doi: 10.1016/j.proci.2004.08.235
  • M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, and S.B. Pope, Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D), Proc. Combust. Inst. 30(1) (2005), pp. 549–556. doi: 10.1016/j.proci.2004.08.028
  • U. Maas and V. Bykov, The extension of the reaction/diffusion manifold concept to systems with detailed transport models, Proc. Combust. Inst. 33(1) (2011), pp. 1253–1259. doi: 10.1016/j.proci.2010.06.117
  • San Diego MEchanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, 2014, Chemical-Kinetic Mechanisms for Combustion Applications, http://combustion.ucsd.edu.
  • G.P. Smith, Y Tao, and H. Wang, Foundational Fuel Chemistry Model Version 1.0 (FFCM-1), http://nanoenergy.stanford.edu/ffcm1, 2016.
  • H.J. Curran, Developing detailed chemical kinetic mechanisms for fuel combustion, Proc. Combust. Inst. 37(1) (2019), pp. 57–81. doi: 10.1016/j.proci.2018.06.054
  • J. Gimenez–Lopez, C.T. Rasmussen, H. Hashemi, M.U. Alzueta, Y. Gao, P. Marshall, C.F. Goldsmith, and P. Glarborg, Experimental and kinetic modeling study of c2H2 oxidation at high pressure, Int. J. Chem. Kinet. 48(11) (2016), pp. 724–738. doi: 10.1002/kin.21028
  • C. Ji, D. Wang, J. Yang, and S. Wang, A comprehensive study of light hydrocarbon mechanisms performance in predicting methane/hydrogen/air laminar burning velocities, Int. J. Hydrogen. Energy. 42(27) (2017), pp. 17260–17274. doi: 10.1016/j.ijhydene.2017.05.203
  • U. Niemann, K. Seshadri, and F.A. Williams, Methane, ethane, and ethylene laminar counterflow diffusion flames at elevated pressures: experimental and computational investigations up to 2.0 MPa, Combust. Flame. 161(1) (2014), pp. 138–146. doi: 10.1016/j.combustflame.2013.07.019
  • C. Chi, G. Janiga, K. Zaehringer, and D. Thevenin, DNS study of the optimal heat release rate marker in premixed methane flames, Proc. Combust. Inst. 37(2) (2019), pp. 2363–2371. doi: 10.1016/j.proci.2018.07.095
  • T. Newman-Lehman, R. Grana, K. Seshadri, and F.A. Williams, The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames, Proc. Combust. Inst. 34(2) (2013), pp. 2147–2153. doi: 10.1016/j.proci.2012.05.102
  • E. Sueli and D.F. Mayers, An introduction to numerical analysis, Cambridge University Press, 2003.
  • A. Iserles, A first course in the numerical analysis of differential equations, Cambridge University Press, 2009.
  • C. Strassacker, V. Bykov, and U. Maas, REDIM reduced modeling of quenching at a cold wall including heterogeneous wall reactions, Int. J. Heat Fluid Flow 69 (2018), pp. 185–193. doi: 10.1016/j.ijheatfluidflow.2017.12.011
  • U. Maas and D. Thevenin, Correlation analysis of direct numerical simulation data of turbulent non-premixed flames, Symp. (Int.) Combust. 27(1) (1998), pp. 1183–1189. doi: 10.1016/S0082-0784(98)80521-3
  • H. Pitsch, C.M. Cha, and S. Fedotov, Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition, Combust. Theory Model. 7(2) (2003), pp. 317–332. doi: 10.1088/1364-7830/7/2/306
  • B. Cuenot, F.N. Egolfopoulos, and T. Poinsot, An unsteady laminar flamelet model for non-premixed combustion, Combust. Theory Model. 4(1) (2000), pp. 77–97. doi: 10.1088/1364-7830/4/1/305
  • P.D. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame. 157(1) (2010), pp. 43–61. doi: 10.1016/j.combustflame.2009.07.008
  • A. Attili, F. Bisetti, M.E. Mueller, and H. Pitsch, Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame, Flame¡/DIFdel¿Combust. Flame. 161(7) (2014), pp. 1849–1865. doi: 10.1016/j.combustflame.2014.01.008
  • N.A. Malik and R.P. Lindstedt, The response of transient inhomogeneous flames to pressure fluctuations and stretch: planar and outwardly propagating methane/air flames, Combust. Sci. Technol. 184 (2012), pp. 1799–1817. doi: 10.1080/00102202.2012.693426
  • A. Attili, F. Bisetti, M.E. Mueller, and H. Pitsch, Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame, Flame¡/DIFdel¿Combust. Flame. 161(7) (2014), pp. 1849–1865. doi: 10.1016/j.combustflame.2014.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.