465
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effects of pressure rise rate on laminar flame speed under normal and engine-relevant conditions

, & ORCID Icon
Pages 953-964 | Received 17 Nov 2019, Accepted 27 May 2020, Published online: 18 Jun 2020

References

  • G.E. Andrews and D. Bradley, Determination of burning velocities: A critical review, Combust. Flame. 18 (1972), pp. 133–153. doi: 10.1016/S0010-2180(72)80234-7
  • F.N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-Hoinghaus, C.K. Law, and F. Qi, Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy Combust. Sci. 43 (2014), pp. 36–67. doi: 10.1016/j.pecs.2014.04.004
  • Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combust. Flame 162 (2015), pp. 2442–2453. doi: 10.1016/j.combustflame.2015.02.012
  • A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, and S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel plus air mixtures. Prog. Energy Combust. Sci. 68 (2018), pp. 197–267. doi: 10.1016/j.pecs.2018.05.003
  • C.K. Wu and C.K. Law, On the determination of laminar flame speed from stretched flames. Proc. Combust. Inst. 20 (1985), pp. 1941–1949. doi: 10.1016/S0082-0784(85)80693-7
  • D. Bradley, P.H. Gaskell and X.J. Gu, Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combust. Flame 104 (1996), pp. 176–198. doi: 10.1016/0010-2180(95)00115-8
  • C.K. Law and C.J. Sung, Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26 (2000), pp. 459–505. doi: 10.1016/S0360-1285(00)00018-6
  • F. Halter, T. Tahtouh and C. Mounaïm-Rousselle, Nonlinear effects of stretch on the flame front propagation. Combust. Flame 157 (2010), pp. 1825–1832. doi: 10.1016/j.combustflame.2010.05.013
  • Z. Chen, On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame 158 (2011), pp. 291–300. doi: 10.1016/j.combustflame.2010.09.001
  • P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11 (1985), pp. 1–59. doi: 10.1016/0360-1285(85)90012-7
  • P. Clavin and J.C. Grana-Otero, Curved and stretched flames: The two Markstein numbers. J. Fluid. Mech. 686 (2011), pp. 187–217. doi: 10.1017/jfm.2011.318
  • P. Clavin and G. Searby, Combustion Waves and Fronts in Flows, Cambridge University Press, Cambridge, 2016.
  • P. Clavin and G. Joulin, Turbulent Reactive Flows, Springer, New York, 1989213 12.
  • S.M. Candel and T.J. Poinsot, Flame stretch and the balance equation for the flame area. Combust. Sci. Tech. 70 (1990), pp. 1–15. doi: 10.1080/00102209008951608
  • M. Metghalchi and J.C. Keck, Laminar burning velocity of propane-air mixtures at high-temperature and pressure. Combust. Flame 38 (1980), pp. 143–154. doi: 10.1016/0010-2180(80)90046-2
  • K. Saeed and C.R. Stone, Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model. Combust. Flame 139 (2004), pp. 152–166. doi: 10.1016/j.combustflame.2004.08.008
  • S.P. Marshall, S. Taylor, C.R. Stone, T.J. Davies and R.F. Cracknell, Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals. Combust. Flame 158 (2011), pp. 1920–1932. doi: 10.1016/j.combustflame.2011.02.016
  • K. Eisazadeh-Far, A. Moghaddas, J. Al-Mulki and H. Metghalchi, Laminar burning speeds of ethanol/air/diluent mixtures. Proc. Combust. Inst. 33 (2011), pp. 1021–1027. doi: 10.1016/j.proci.2010.05.105
  • M. Kuznetsov, R. Redlinger, W. Breitung, J. Grune, A. Friedrich and N. Ichikawa, Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures. Proc. Combust. Inst. 33 (2011), pp. 895–903. doi: 10.1016/j.proci.2010.06.050
  • O. Askari, A. Moghaddas, A. Alholm, K. Vien, B. Alhazmi and H. Metghalchi, Laminar burning speed measurement and flame instability study of H2/CO/air mixtures at high temperatures and pressures using a novel multi-shell model. Combust. Flame 168 (2016), pp. 20–31. doi: 10.1016/j.combustflame.2016.03.018
  • C. Xiouris, T. Ye, J. Jayachandran and F.N. Egolfopoulos, Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments. Combust. Flame 163 (2016), pp. 270–283. doi: 10.1016/j.combustflame.2015.10.003
  • N. Hinton, R. Stone and R. Cracknell, Laminar burning velocity measurements in constant volume vessels – reconciliation of flame front imaging and pressure rise methods. Fuel 211 (2018), pp. 446–457. doi: 10.1016/j.fuel.2017.09.031
  • R.R. Burrell, J.L. Pagliaro and G.T. Linteris, Effects of stretch and thermal radiation on difluoromethane/air burning velocity measurements in constant volume spherically expanding flames. Proc. Combust. Inst. 37 (2019), pp. 4231–4238. doi: 10.1016/j.proci.2018.06.018
  • M. Faghih and Z. Chen, The constant-volume propagating spherical flame method for laminar flame speed measurement. Sci. Bull 61 (2016), pp. 1–15. doi: 10.1007/s11434-016-1143-6
  • G. Xu, C. Hanauer, Y. Wright and K. Boulouchos, CFD-simulation of ignition and combustion in lean burn gas engines, SAE Paper (2016) 2016-01-0800.
  • Z.C. Tan and R.D. Reitz, An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling. Combust. Flame 145 (2006), pp. 1–15. doi: 10.1016/j.combustflame.2005.12.007
  • J. Jayachandran and F.N. Egolfopoulos, Effect of unsteady pressure rise on flame propagation and near-cold-wall ignition. Proc. Combust. Inst. 37 (2019), pp. 1639–1647. doi: 10.1016/j.proci.2018.06.065
  • I. Smith, C.K. Westbrook and R.F. Sawyer, Lean limit combustion in an expanding chamber. Seventeenth Symp. (Int.) Combust. 17 (1979), pp. 1305–1313. doi: 10.1016/S0082-0784(79)80123-X
  • N. Peters and G.S.S. Ludford, The effect of pressure variations on premixed flames. Combust. Sci. Tech. 34 (1983), pp. 331–344. doi: 10.1080/00102208308923698
  • Z. Chen, M.P. Burke, and Y. Ju, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Combust. Inst 32 (2009), pp. 1253–1260. doi: 10.1016/j.proci.2008.05.060
  • Z. Chen, Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157 (2010), pp. 2267–2276. doi: 10.1016/j.combustflame.2010.07.010
  • P. Dai and Z. Chen, Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition. Combust. Flame 162 (2015), pp. 4183–4193. doi: 10.1016/j.combustflame.2015.08.002
  • J. Li, Z. Zhao, A. Kazakov, and F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36 (2004), pp. 566–575. doi: 10.1002/kin.20026
  • G. Smith, D. Golden, and M. Frenklach, The GRI-Mech 3.0 chemical kinetic mechanism. Available at https://combustion.berkeley.edu/gri-mech/.
  • M. Chaos, A. Kazakov, Z. Zhao, and F.L. Dryer, A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39 (2007), pp. 399–414. doi: 10.1002/kin.20253
  • W.K. Zhang, X.L. Gou, and Z. Chen, Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures. Fuel 187 (2017), pp. 111–116. doi: 10.1016/j.fuel.2016.09.057
  • M. Faghih and Z. Chen, Two-stage heat release in nitromethane/air flame and its impact on laminar flame speed measurement. Combust. Flame 183 (2017), pp. 157–165. doi: 10.1016/j.combustflame.2017.05.013
  • W.K. Zhang, M. Faqih, X.L. Gou, and Z. Chen, Numerical study on the transient evolution of a premixed cool flame. Combust. Flame 187 (2018), pp. 129–136. doi: 10.1016/j.combustflame.2017.09.009
  • Z. Li, X. Gou and Z. Chen, Effects of hydrogen addition on non-premixed ignition of iso-octane by hot air in a diffusion layer. Combust. Flame 199 (2019), pp. 292–300. doi: 10.1016/j.combustflame.2018.10.031
  • Y. Wang, A. Movaghar, Z. Wang, Z. Liu, W. Sun, F.N. Egolfopoulos, and Z. Chen, Laminar flame speeds of methane/air mixtures at engine conditions: Performance of different kinetic models and power-law correlations. Combust. Flame 218 (2020), pp. 101–108. doi: 10.1016/j.combustflame.2020.05.004
  • A.C. Mcintosh, Pressure disturbances of different length scales interacting with conventional flames, Combust. Sci. Tech. 75 (1991), pp. 287–309. doi: 10.1080/00102209108924093
  • T.C. Lieuwen, Unsteady Combustion Physics, Cambridge University Press, New York, 2012.
  • Z.Y. Wang, Z.W. Bai, S.C. Yelishala, G.Y. Yu, and H. Metghalchi, Effects of diluent on laminar burning speed and flame structure of gas to liquid fuel air mixtures at high temperatures and moderate pressures. Fuel 231 (2018), pp. 204–214. doi: 10.1016/j.fuel.2018.05.069
  • Z. Chen, M.P. Burke, and Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst 33 (2011), pp. 1219–1226. doi: 10.1016/j.proci.2010.05.005
  • H. Yu and Z. Chen, End-gas autoignition and detonation development in a closed chamber. Combust. Flame 162 (2015), pp. 4102–4111. doi: 10.1016/j.combustflame.2015.08.018
  • M. Faghih, H.Y. Li, X.L. Gou, and Z. Chen, On laminar premixed flame propagating into autoigniting mixtures under engine-relevant conditions. Proc. Combust. Inst 37 (2019), pp. 4673–4680. doi: 10.1016/j.proci.2018.06.058
  • A. Ansari, J. Jayachandran, and F.N. Egolfopoulos, Parameters influencing the burning rate of laminar flames propagating into a reacting mixture. Proc. Combust. Inst 37 (2019), pp. 1513–1520. doi: 10.1016/j.proci.2018.05.163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.