256
Views
5
CrossRef citations to date
0
Altmetric
Articles

Improved path flux analysis mechanism reduction method for high and low temperature oxidation of hydrocarbon fuels

&
Pages 1090-1107 | Received 07 Nov 2019, Accepted 18 Aug 2020, Published online: 16 Sep 2020

References

  • C.K. Westbrook, Y. Mizobuchi, T.J. Poinsot, P.J. Smith, and J. Warnatz, Computational combustion. Proc. Combust. Inst. 30 (2005), pp. 125–157. doi: 10.1016/j.proci.2004.08.275
  • C.K. Law, Combustion Physics, Cambridge university press, New York, 2010.
  • X. Gou, W. Sun, Z. Chen and Y. Ju, A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combust. Flame. 157 (2010), pp. 1111–1121. doi: 10.1016/j.combustflame.2010.02.020
  • U. Maas and D.A. Goussis, Model Reduction for Combustion Chemistry (2011), pp. 193–220.
  • D. Goussis and S. Lam, A study of homogeneous methanol oxidation kinetics using CSP, Symposium (International) on combustion, 1992, pp. 113–120.
  • T. Turányi, Sensitivity analysis of complex kinetic systems. Tools and applications. J. Math. Chem. 5 (1990), pp. 203–248. doi: 10.1007/BF01166355
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992), pp. 239–264. doi: 10.1016/0010-2180(92)90034-M
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, 1997.
  • T. Lu and C.K. Law, A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30 (2005), pp. 1333–1341. doi: 10.1016/j.proci.2004.08.145
  • T. Lu and C.K. Law, On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146 (2006), pp. 472–483. doi: 10.1016/j.combustflame.2006.04.017
  • T. Lu and C.K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane. Combust. Flame 144 (2006), pp. 24–36. doi: 10.1016/j.combustflame.2005.02.015
  • Z. Luo, T. Lu, M.J. Maciaszek, S. Som and D.E. Longman, A reduced mechanism for high-temperature oxidation of biodiesel surrogates. Energy Fuels 24 (2010), pp. 6283–6293. doi: 10.1021/ef1012227
  • T. Lu and C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35 (2009), pp. 192–215. doi: 10.1016/j.pecs.2008.10.002
  • P. Pepiot-Desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154 (2008), pp. 67–81. doi: 10.1016/j.combustflame.2007.10.020
  • W. Sun, Z. Chen, X. Gou and Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combust. Flame 157 (2010), pp. 1298–1307. doi: 10.1016/j.combustflame.2010.03.006
  • A.K. Agarwal, A.P. Singh and R.K. Maurya, Evolution, challenges and path forward for low temperature combustion engines. Prog. Energy Combust. Sci. 61 (2017), pp. 1–56. doi: 10.1016/j.pecs.2017.02.001
  • D.M. Karwat, S.W. Wagnon, M.S. Wooldridge and C.K. Westbrook, Low-temperature speciation and chemical kinetic studies of n-heptane. Combust. Flame 160 (2013), pp. 2693–2706. doi: 10.1016/j.combustflame.2013.06.029
  • A. Rousso, S. Yang, J. Lefkowitz, W. Sun and Y. Ju, Low temperature oxidation and pyrolysis of n-heptane in nanosecond-pulsed plasma discharges. Proc. Combust. Inst. 36 (2017), pp. 4105–4112. doi: 10.1016/j.proci.2016.08.084
  • C. Geng, H. Liu, Y. Cui, Z. Yang, X. Fang, L. Feng and M. Yao, Study on single-fuel reactivity controlled compression ignition combustion through low temperature reforming. Combust. Flame 199 (2019), pp. 429–440. doi: 10.1016/j.combustflame.2018.10.040
  • N. Ramesh and J. Mallikarjuna, Low temperature combustion strategy in an off-highway diesel engine–experimental and CFD study. Appl. Therm. Eng. 124 (2017), pp. 844–854. doi: 10.1016/j.applthermaleng.2017.06.078
  • F. Battin-Leclerc, Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog. Energy Combust. Sci. 34 (2008), pp. 440–498. doi: 10.1016/j.pecs.2007.10.002
  • S. Kimura, O. Aoki, Y. Kitahara, and E. Aiyoshizawa, Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards. Sae Trans. 110 (2001), pp. 239–246.
  • M.-G. Kim, M.G. Kanatzidis, A. Facchetti and T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10 (2011), pp. 382–388. doi: 10.1038/nmat3011
  • A.B. Dempsey, N.R. Walker, E. Gingrich and R.D. Reitz, Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability. Combust. Sci. Technol. 186 (2014), pp. 210–241. doi: 10.1080/00102202.2013.858137
  • E.M. Fisher, W.J. Pitz, H.J. Curran and C.K. Westbrook, Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proc. Combust. Inst. 28 (2000), pp. 1579–1586. doi: 10.1016/S0082-0784(00)80555-X
  • A.C. Davis and J.S. Francisco, Ab initio study of hydrogen migration across n-alkyl radicals. J. Phys. Chem. A 115 (2011), pp. 2966–2977. doi: 10.1021/jp110142h
  • H.J. Curran, P. Gaffuri, W.J. Pitz and C.K. Westbrook, A comprehensive modeling study of n-heptane oxidation. Combust. Flame 114 (1998), pp. 149–177. doi: 10.1016/S0010-2180(97)00282-4
  • J. Zádor, C.A. Taatjes and R.X. Fernandes, Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 37 (2011), pp. 371–421. doi: 10.1016/j.pecs.2010.06.006
  • Z. Wang and X. Gou, Cool flame characteristics of methane/oxygen mixtures. J. Energy Inst. (2018), pp. 2004–2010.
  • W. Wang and X. Gou, An improved path flux analysis with multi generations method for mechanism reduction. Combust. Theor. Model. 20 (2016), pp. 203–220. doi: 10.1080/13647830.2015.1117660
  • W.J. Parker, Calculations of the heat release rate by oxygen consumption for various applications. J. Fire. Sci. 2 (1984), pp. 380–395. doi: 10.1177/073490418400200505
  • S. Deng, D. Han and C.K. Law, Ignition and extinction of strained nonpremixed cool flames at elevated pressures. Combust. Flame 176 (2017), pp. 143–150. doi: 10.1016/j.combustflame.2016.10.015
  • P. Zhao, W. Liang, S. Deng and C.K. Law, Initiation and propagation of laminar premixed cool flames. Fuel 166 (2016), pp. 477–487. doi: 10.1016/j.fuel.2015.11.025
  • P. Dagaut, M. Reuillon and M. Cathonnet, Experimental study of the oxidation of n-heptane in a jet stirred reactor from low to high temperature and pressures up to 40 atm. Combust. Flame 101 (1995), pp. 132–140. doi: 10.1016/0010-2180(94)00184-T
  • N. Peters, G. Paczko, R. Seiser and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane. Combust. Flame 128 (2002), pp. 38–59. doi: 10.1016/S0010-2180(01)00331-5
  • M. Mehl, W.J. Pitz, C.K. Westbrook and H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 33 (2011), pp. 193–200. doi: 10.1016/j.proci.2010.05.027
  • H.J. Curran, P. Gaffuri, W.J. Pitz and C.K. Westbrook, A comprehensive modeling study of iso-octane oxidation. Combust. Flame 129 (2002), pp. 253–280. doi: 10.1016/S0010-2180(01)00373-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.