178
Views
1
CrossRef citations to date
0
Altmetric
Articles

Flammability dynamics and oscillation-induced extinction mechanism of dimethyl ether spherical diffusion flame in microgravity

, , , &
Pages 1130-1152 | Received 05 May 2020, Accepted 29 Aug 2020, Published online: 17 Sep 2020

References

  • V. Józsa and A. Kun-Balog, Stability and emission analysis of crude rapeseed oil combustion. Fuel Process. Technol. 156 (2017), pp. 204–210. doi: 10.1016/j.fuproc.2016.11.004
  • Y.C. Li, M.S. Bi, L. Huang, Q.X. Liu, B. Li, D.Q. Ma and W. Gao, Hydrogen cloud explosion evaluation under inert gas atmosphere. Fuel Process. Technol. 180 (2018), pp. 96–104. doi: 10.1016/j.fuproc.2018.08.015
  • X.Q. Fu, B.Q. He, H.T. Li, T. Chen, S.P. Xu and H. Zhao, Effect of direct injection dimethyl ether on the micro-flame ignited (MFI) hybrid combustion and emission characteristics of a 4-stroke gasoline engine. Fuel Process. Technol. 167 (2017), pp. 555–562. doi: 10.1016/j.fuproc.2017.08.001
  • Y. Kang, T. Lu, X. Lu, X. Gou, X. Huang, S. Peng, X. Ji, Y. Zhou and Y. Song, On predicting the length, width, and volume of the jet diffusion flame. Appl. Therm. Eng. 94 (2016), pp. 799–812. doi: 10.1016/j.applthermaleng.2015.11.006
  • W.K. Liang and C.K. Law, Extended flammability limits of n-heptane/air mixtures with cool flames. Combust. Flame 185 (2017), pp. 75–81. doi: 10.1016/j.combustflame.2017.06.015
  • R.S. Barlow, S. Meares, G. Magnotti, H. Cutcher and A.R. Masri, Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets. Combust. Flame 162 (2015), pp. 3516–3540. doi: 10.1016/j.combustflame.2015.06.009
  • X. Li, H. Yang, L. Jiang, X. Wang and D. Zhao, Stretch extinction characteristics of CH4/CO2 versus O2/H2O/CO2 and O2/H2O counterflow non-premixed flames at different oxidizer temperatures. Fuel 186 (2016), pp. 648–655. doi: 10.1016/j.fuel.2016.09.017
  • E.W. Christiansen, S.D. Tse and C.K. Law, A computational study of oscillatory extinction of spherical diffusion flames. Combust. Flame 134 (2003), pp. 327–337. doi: 10.1016/S0010-2180(03)00112-3
  • S.T. Tang, H.G. Im and A. Atreya, A computational study of spherical diffusion flames in microgravity with gas radiation. Part II: parametric studies of the diluent effects on flame extinction. Combust. Flame 157 (2010), pp. 127–136. doi: 10.1016/j.combustflame.2009.09.011
  • S.W. Yoo, E.W. Christiansen and C.K. Law, Oscillatory extinction of spherical diffusion flames: micro-buoyancy experiment and computation. Proc. Combust. Inst. 29 (2002), pp. 29–36. doi: 10.1016/S1540-7489(02)80008-6
  • D.L. Dietrich, H.D. Ross, D.T. Frante, et al.  4th International Microgravity Combustion Workshop, Cleveland, OH, NASA Conference Publication No. 10194, pp. 31–36, 1997.
  • T.I. Farouk, M.C. Hicks and F.L. Dryer, Multistage oscillatory “cool flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition. Proc. Combust. Inst. 35 (2015), pp. 1701–1708. doi: 10.1016/j.proci.2014.06.015
  • L. Wang, Y. Jiang, L. Pan, Y. Xia and R. Qiu, Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H2/CO/N2 syngas non-premixed flame. Int J Hydrogen Energy 41 (2016), pp. 4820–4830. doi: 10.1016/j.ijhydene.2016.01.043
  • R.Q. Shan and T.F. Lu, Ignition and extinction in perfectly stirred reactors with detailed chemistry. Combust. Flame 159 (2012), pp. 2069–2076. doi: 10.1016/j.combustflame.2012.01.023
  • C.K. Law, Combustion Physics, Cambridge University Press, London, 2006.
  • C.B. Reuter, S.H. Won and Y.G. Ju, Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner. Combust. Flame 166 (2016), pp. 125–132. doi: 10.1016/j.combustflame.2016.01.008
  • Y.G. Ju, C.B. Reuter and S.H. Won, Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures. Combust. Flame 162 (2015), pp. 3580–3588. doi: 10.1016/j.combustflame.2015.06.014
  • L.B. Yan, W.M. Jing, Q.B. Guo, et al., Experimental Study on Effect of Fuel Profile on Extinction and Emission Characteristics of DLN Combustion Chamber, China National Symposium on Combustion, Maanshan, China, 2016.
  • M.J.L. Turner, Rocket and Spacecraft Propulsion (3rd edition), Springer Press, Berlin, 2009.
  • H.Y. Wang, J.K. Bechtold and C.K. Law, Nonlinear oscillations in diffusion flames. Combust, Flame 145 (2016), pp. 376–389. doi: 10.1016/j.combustflame.2005.08.042
  • S. Cheatham and M. Matalon, Heat loss and Lewis number effects on the onset of oscillations in diffusion flames. Symposium (International) Combust. 26 (1996), pp. 1063–1070. doi: 10.1016/S0082-0784(96)80320-1
  • S.H. Lam, Model reductions with special CSP data. Combust. Flame 160 (2013), pp. 2707–2711. doi: 10.1016/j.combustflame.2013.06.013
  • R.Q. Shan and T.F. Lu, A bifurcation analysis for limit flame phenomena of DME/air in perfectly stirred reactors. Combust. Flame 161 (2014), pp. 1716–1723. doi: 10.1016/j.combustflame.2013.12.025
  • M. Kooshkbaghi, C.E. Frouzakis, K. Boulouchos and I.V. Karlin,n-Heptane/air combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions. Combust. Flame 162 (2015), pp. 3166–3179. doi: 10.1016/j.combustflame.2015.05.002
  • R.J. Kee, J.F. Grcar, M.D. Smooke and J.A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, Report No. SAND85-8240, Sandia National Laboratories, 1985.
  • M.F. Modest, Radiative Heat Transfer, Academic Press, 2003.
  • S.T. Tang, A computational study of spherical diffusion flames in microgravity with gas radiation, A dissertation of the University of Michigan, 2008.
  • K.J. Santa, B.H. Chao, P.B. Sunderland, D.L. Urban, P. Stocker and R.L. Axelbaum, Radiative extinction of gaseous spherical diffusion flames in microgravity. Combust. Flame 151 (2007), pp. 665–675. doi: 10.1016/j.combustflame.2007.08.009
  • K.J. Santa, Z. Sun, B.H. Chao, P.B. Sunderland, R.L. Axelbaum, D.L. Urban and D.P. Stocker, Numerical and experimental observations of spherical diffusion flames. Combust. Theor. Model 11 (2007), pp. 639–652. doi: 10.1080/13647830601161567
  • R.J. Kee, F.M. Rupley and J.A. Miller, Chemkin-II: a fortran chemical kinetics package for the analysis of gas phase chemical kinetics, Report No. SAND89-8009B, Sandia National Laboratories, 1989.
  • J.F. Grcar, The twopnt program for boundary value problems, Report No. SAND91-8230, Sandia National Laboratories, 1992.
  • Z.W. Zhao, M. Chaos, A. Kazakov and F.L. Dryer, Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet. 40 (2008), pp. 1–18. doi: 10.1002/kin.20285
  • Y. Kang, T. Lu, X. Lu, Q. Wang, X. Huang, S. Peng, D. Yang, X. Ji and Y. Song, Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition. Energy Convers. Manage 108 (2016), pp. 549–565. doi: 10.1016/j.enconman.2015.11.039
  • Y.H. Kang, Q. Wang, P.Y. Zhang, C.C. Liu, X.F. Lu and Q.H. Wang, Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames. Energy 193 (2020), pp. 116786. doi: 10.1016/j.energy.2019.116786
  • Y. Kang, Q. Wang, X. Lu, H. Wan, X. Ji, H. Wang, Q. Guo, J. Yan and J. Zhou, Experimental and numerical study on NOx and CO emission characteristics of dimethyl ether/air jet diffusion flame. Appl. Energy 149 (2015), pp. 204–224. doi: 10.1016/j.apenergy.2015.03.135
  • M. Nishioka and C.K. Law, A flame-controlling continuation method for generating S-curve response with detailed chemistry. Combust. Flame 104 (1996), pp. 328–342. doi: 10.1016/0010-2180(95)00132-8
  • V. Nayagam, D.L. Dietrich, P. Ferkul, M.C. Hicks and F.A. Williams, Can cool flames support quasi-steady alkane droplet burning? Combust. Flame 159 (2012), pp. 3583–3588. doi: 10.1016/j.combustflame.2012.07.012
  • A. Cuoci, A. Frassoldati, T. Faravelli and E. Ranzi, Numerical modeling of auto-ignition of isolated fuel droplets in microgravity. Proc. Combust. Inst. 35 (2015), pp. 1621–1627. doi: 10.1016/j.proci.2014.06.035
  • T.I. Farouk and F.L. Dryer, On the extinction characteristics of alcohol droplet combustion under microgravity conditions – a numerical study. Combust. Flame 159 (2012), pp. 3208–3223. doi: 10.1016/j.combustflame.2012.04.005
  • T.I. Farouk, D. Dietrich, F.E. Alam and F.L. Dryer, Isolated n-decane droplet combustion – dual stage and single stage transition to “cool flame” droplet burning. Proc. Combust. Inst. 36 (2017), pp. 2523–2530. doi: 10.1016/j.proci.2016.07.015
  • T.I. Farouk and F.L. Dryer, Isolated n-heptane droplet combustion in microgravity: “cool flames” – two-stage combustion. Combust. Flame 161 (2014), pp. 565–581. doi: 10.1016/j.combustflame.2013.09.011
  • V. Nayagam, D.L. Dietrich, M.C. Hicks and F.A. Williams, Cool-flame extinction during n-alkane droplet combustion in microgravity. Combust. Flame 162 (2015), pp. 2140–2147. doi: 10.1016/j.combustflame.2015.01.012
  • Y. Minamoto and J.H. Chen, DNS of a turbulent lifted DME jet flame. Combust Flame 169 (2016), pp. 38–50. doi: 10.1016/j.combustflame.2016.04.007
  • C.B. Reuter, M. Lee, S.H. Won and Y.G. Ju, Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust. Flame 179 (2017), pp. 23–32. doi: 10.1016/j.combustflame.2017.01.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.