272
Views
3
CrossRef citations to date
0
Altmetric
Articles

Simulations of turbulent acetone spray flames using the conditional source term estimation (CSE) approach

&
Pages 269-292 | Received 13 Jul 2020, Accepted 24 Nov 2020, Published online: 24 Dec 2020

References

  • A. Masri, Turbulent combustion of sprays: From dilute to dense, Combust. Sci. Technol. 188(10) (2016), pp. 1619–1639.
  • S. Subramaniam, Lagrangian–Eulerian methods for multiphase flows, Prog. Energy Combust. Sci.39(2–3) (2013), pp. 215–245.
  • A. Mostafa and H. Mongia, On the modeling of turbulent evaporating sprays: Eulerian versus Lagrangian approach, Int. J. Heat Mass Trans. 30(12) (1987), pp. 2583–2593.
  • G.M. Faeth, Mixing, transport and combustion in sprays, Prog. Energy Combust. Sci. 13(4) (1987), pp. 293–345.
  • G. Stiesch, Modeling Engine Spray and Combustion Processes, Springer-Verlag, Berlin Heidelberg, 2003.
  • J.D. Gounder, A. Kourmatzis, and A.R. Masri, Turbulent piloted dilute spray flames: Flow fields and droplet dynamics, Combust. Flame 159(11) (2012), pp. 3372–3397.
  • G. Borghesi, E. Mastorakos, C.B. Devaud, and R.W. Bilger, Modeling evaporation effects in conditional moment closure for spray autoignition, Combust. Theory Model. 15(5) (2011), pp. 725–752.
  • S. Ukai, A. Kronenburg, and O. Stein, LES-CMC of a dilute acetone spray flame, Proc. Combust. Inst. 34(1) (2013), pp. 1643–1650.
  • S. Ukai, A. Kronenburg, and O.T. Stein, Simulation of dilute acetone spray flames with LES-CMC using two conditional moments, Flow Turbul. Combust. 93(3) (2014), pp. 405–423.
  • S. Ukai, A. Kronenburg, and O. Stein, Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry, Proc. Combust. Inst. 35(2) (2015), pp. 1667–1674.
  • A. Giusti and E. Mastorakos, Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off, Proc. Combust. Inst. 36(2) (2017), pp. 2625–2632.
  • M. Chrigui, J. Gounder, A. Sadiki, A.R. Masri, and J. Janicka, Partially premixed reacting acetone spray using LES and FGM tabulated chemistry, Combust. Flame 159(8) (2012), pp. 2718–2741.
  • M. Chrigui, J. Gounder, A. Sadiki, J. Janicka, and A. Masri, Acetone droplet behavior in reacting and non-reacting turbulent flow, Flow Turbul. Combust. 90(2) (2013), pp. 419–447.
  • S. De and S.H. Kim, Large eddy simulation of dilute reacting sprays: Droplet evaporation and scalar mixing, Combust. Flame 160(10) (2013), pp. 2048–2066.
  • A. Rittler, F. Proch, and A.M. Kempf, LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162(4) (2015), pp. 1575–1598.
  • E. Knudsen and H. Pitsch, Modeling partially premixed combustion behavior in multiphase LES, Combust. Flame 162(1) (2015), pp. 159–180.
  • Y. Hu and R. Kurose, Nonpremixed and premixed flamelets LES of partially premixed spray flames using a two-phase transport equation of progress variable, Combust. Flame 188 (2018), pp. 227–242.
  • Y. Hu and R. Kurose, Partially premixed flamelet in LES of acetone spray flames, Proc. Combust. Inst. 37(3) (2019), pp. 3327–3334.
  • N. Khan, M.J. Cleary, O.T. Stein, and A. Kronenburg, A two-phase MMC-LES model for turbulent spray flames, Combust. Flame 193 (2018), pp. 424–439.
  • F. Demoulin and R. Borghi, Assumed PDF modeling of turbulent spray combustion, Combust. Sci. Technol. 158(1) (2000), pp. 249–271.
  • Z. Liu, C. Zheng, and L. Zhou, A joint PDF model for turbulent spray evaporation/combustion, Proc. Combust. Inst. 29(1) (2002), pp. 561–568.
  • W. Jones, A. Marquis, and K. Vogiatzaki, Large-eddy simulation of spray combustion in a gas turbine combustor, Combust. Flame 161 (2014), pp. 222–239.
  • X. Fang, R. Ismail, K. Bushe, and M. Davy, Simulation of ECN diesel spray A using conditional source-term estimation, Combust. Theory Model. 24 (2020), pp. 725–760.
  • W.K. Bushe and H. Steiner, Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows, Phys. Fluids 11(7) (1999), pp. 1896–1906.
  • R. Grout, W.K. Bushe, and C. Blair, Predicting the ignition delay of turbulent methane jets using conditional source-term estimation, Combust. Theory Model. 11(6) (2007), pp. 1009–1028.
  • M. Wang, J. Huang, and W. Bushe, Simulation of a turbulent non-premixed flame using conditional source-term estimation with trajectory generated low-dimensional manifold, Proc. Combust. Inst. 31(2) (2007), pp. 1701–1709.
  • J. Huang and W. Bushe, Simulation of transient turbulent methane jet ignition and combustion under engine-relevant conditions using conditional source-term estimation with detailed chemistry, Combust. Theory Model. 11(6) (2007), pp. 977–1008.
  • J.W. Labahn and C.B. Devaud, Investigation of conditional source-term estimation applied to a non-premixed turbulent flame, Combust. Theory Model. 17(5) (2013), pp. 960–982.
  • S. Lee and C. Devaud, Application of conditional source-term estimation to two turbulent non-premixed methanol flames, Combust. Theory Model. 20(5) (2016), pp. 765–797.
  • J.W. Labahn and C. Devaud, Species and temperature predictions in a semi-industrial MILD furnace using a non-adiabatic conditional source-term estimation formulation, Combust. Theory Model. 21(3) (2017), pp. 466–486.
  • J.W. Labahn, I. Stanković, C.B. Devaud, and B. Merci, Comparative study between conditional moment closure (CMC) and conditional source-term estimation (CSE) applied to piloted jet flames, Combust. Flame 181 (2017), pp. 172–187.
  • M. Salehi and W. Bushe, Presumed PDF modeling for RANS simulation of turbulent premixed flames, Combust. Theory Model. 14(3) (2010), pp. 381–403.
  • D. Dovizio, M.M. Salehi, and C.B. Devaud, RANS simulation of a turbulent premixed bluff body flame using conditional source-term estimation, Combust. Theory Model. 17(5) (2013), pp. 935–959.
  • N. Shahbazian, M.M. Salehi, C.P. Groth, Ö. L. Gülder, and W.K. Bushe, Performance of conditional source-term estimation model for LES of turbulent premixed flames in thin reaction zones regime, Proc. Combust. Inst. 35(2) (2015), pp. 1367–1375.
  • D. Dovizio, A. Debbagh, and C. Devaud, RANS simulations of a series of turbulent v-shaped flames using conditional source-term estimation, Flow Turbul. Combust. 96(4) (2016), pp. 891–919.
  • J. Labahn, D. Dovizio, and C. Devaud, Numerical simulation of the delft-jet-in-hot-coflow (DJHC) flame using conditional source-term estimation, Proc. Combust. Inst. 35(3) (2015), pp. 3547–3555.
  • J. Labahn and C. Devaud, Large eddy simulations (LES) including conditional source-term estimation (CSE) applied to two delft-jet-in-hot-coflow (DJHC) flames, Combust. Flame 164 (2016), pp. 68–84.
  • D. Dovizio, J.W. Labahn, and C.B. Devaud, Doubly conditional source-term estimation (DCSE) applied to a series of lifted turbulent jet flames in cold air, Combust. Flame 162(5) (2015), pp. 1976–1986.
  • D. Dovizio and C. Devaud, Doubly conditional source-term estimation (DCSE) for the modelling of turbulent stratified v-shaped flame, Combust. Flame 172 (2016), pp. 79–93.
  • M. Mortada and C. Devaud, Large eddy simulation of lifted turbulent flame in cold air using doubly conditional source-term estimation, Combust. Flame 208 (2019), pp. 420–435.
  • J.D. Gounder, An experimental investigation of non-reacting and reacting spray jets, Ph.D. thesis, University of Sydney, 2009.
  • S. Pope and U. Maas, Simplifying chemical kinetics: Trajectory-generated low-dimensional manifolds, Mechanical and Aerospace Engineering Report, Report No. FDA, Ithaca, NY, 1993, pp. 93–11.
  • A. Masri and J. Gounder, Turbulent spray flames of acetone and ethanol approaching extinction, Combust. Sci. Technol. 182(4–6) (2010), pp. 702–715.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  • C. Hollmann and E. Gutheil, Modeling of turbulent spray diffusion flames including detailed chemistry, Symp. (Int.) Combust. 26 (1996), pp. 1731–1738.
  • A.Y. Klimenko and R.W. Bilger, Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25(6) (1999), pp. 595–687.
  • S. Girimaji, Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing, Combust. Sci. Technol. 78(4-6) (1991), pp. 177–196.
  • A. Tikhonov and V. Arsenin, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Doklady 4 (1963), pp. 1035–1038.
  • J. Labahn, C. Devaud, T. Sipkens, and K. Daun, Inverse analysis and regularisation in conditional source-term estimation modelling, Combust. Theory Model. 18 (2014), pp. 474–499.
  • S. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), p. 1.
  • P.C. Hansen, Numerical tools for analysis and solution of Fredholm integral equations of the first kind, Problems¡/DIFdel¿Inverse Probl. 8(6) (1992), p. 849.
  • R.J. Renka, Algorithm 751: Tripack: A constrained two-dimensional Delaunay triangulation package, ACM Trans. Math. Softw. (TOMS) 22(1) (1996), pp. 1–8.
  • S. Pope, Modeling of spray jet flame under MILD condition with non-adiabatic FGM and a new conditional droplet injection model, Combust. Flame 165 (2016), pp. 402–423.
  • Y. Zhang, H. Wang, A. Both, L. Ma, and M. Yao, Effects of turbulence-chemistry interactions on auto-ignition and flame structure for n-dodecane spray combustion, Combust. Theory Model. 23 (2019), pp. 907–934.
  • C.T. Chong and S. Hochgreb, Measurements of laminar flame speeds of acetone/methane/air mixtures, Combust. Flame 158(3) (2011), pp. 490–500.
  • R. Barlow, A. Karpetis, J. Frank, and J.-Y. Chen, Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames, Combust. Flame 127(3) (2001), pp. 2102–2118.
  • TNF workshop. Available at http://www.sandia.gov/tnf/abstract.html.
  • R.D. Reitz and R. Diwakar, Effect of drop breakup on fuel sprays, SAE Trans. 95 (1986), pp. 218–227.
  • J.D. Schwarzkopf, M. Sommerfeld, C.T. Crowe, and Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, 2011.
  • W. Ranz and W.R. Marshall, Evaporation from drops, Chem. Eng. Prog. 48(3) (1952), pp. 141–146.
  • R. Cant and E. Mastorakos, An Introduction to Turbulent Reacting Flows, Imperial College Press, London, 2008.
  • W. Bushe, C. Devaud, and J. Bellan, A priori evaluation of the double-conditioned conditional source-term estimation model for high-pressure heptane turbulent combustion using DNS data obtained with one-step chemistry, Combust. Flame 217 (2020), pp. 131–151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.