170
Views
3
CrossRef citations to date
0
Altmetric
Articles

A generalised spray-flamelet formulation by means of a monotonic variable

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 293-314 | Received 27 Aug 2020, Accepted 09 Dec 2020, Published online: 05 Jan 2021

References

  • H.H. Chiu, Advances and challenges in droplet and spray combustion. I. Toward a unified theory of droplet aerothermochemistry. Prog. Energy Combust. Sci. 26(4–6) (2000), pp. 381–416. doi: 10.1016/S0360-1285(00)00016-2
  • G.M. Faeth, Evaporation and combustion of sprays, Prog. Energy Combust. Sci. 9(1–2) (1983), pp. 1–76. doi: 10.1016/0360-1285(83)90005-9
  • P. Jenny, D. Roekaerts, and N. Beishuizen, Modeling of turbulent dilute spray combustion, Prog. Energy Combust. Sci. 38(6) (2012), pp. 846–887. doi: 10.1016/j.pecs.2012.07.001
  • D. Kah, F. Laurent, L. Fréret, S. de Chaisemartin, R.O. Fox, J. Reveillon, and M. Massot, Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays, Flow Turbul. Combust.85(3) (2010), pp. 649–676. doi: 10.1007/s10494-010-9286-z
  • F. Laurent and M. Massot, Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods, Combust. Theory Model. 5(4) (2001), pp. 537–572. doi: 10.1088/1364-7830/5/4/303
  • W.A. Sirignano, Advances in droplet array combustion theory and modeling, Prog. Energy Combust. Sci. 42 (2014), pp. 54–86. doi: 10.1016/j.pecs.2014.01.002
  • B. Franzelli, A. Vié, and M. Ihme, On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames, Combust. Theory Model. 19 (2015), pp. 773–806. doi: 10.1080/13647830.2015.1099740
  • S. Changxiao, K. Luo, C. Min, H. Wang, and J. Fan, A computational framework for interface-resolved DNS of simultaneous atomization, evaporation and combustion, J. Comput. Phys. 371 (2018), pp. 751–778. doi: 10.1016/j.jcp.2018.06.011
  • A.M. Irannejad, A. Banaeizadeh, and F. Jaberi, Large eddy simulation of turbulent spray combustion, Combust. Flame 162 (2014), pp. 431–450. doi: 10.1016/j.combustflame.2014.07.029
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, R.T. Edwards, Philadelphia, PA, 2001.
  • K. Luo, J. Fan, and K. Cen, New spray flamelet equations considering evaporation effects in the mixture fraction space, Fuel 103 (2013), pp. 1154–1157. doi: 10.1016/j.fuel.2012.06.060
  • H. Olguin and E. Gutheil, Influence of evaporation on spray flamelet structures, Combust. Flame 161 (2014), pp. 987–996. doi: 10.1016/j.combustflame.2013.10.010
  • A.L. Sanchez, J. Urzay, and A. Liñan, The role of separation of scales in the description of spray combustion, Proc. Combust. Inst. 35 (2015), pp. 1549–1577. doi: 10.1016/j.proci.2014.08.018
  • N.S.A. Smith, C.M. Cha, H. Pitsch, and J.C. Oefelien, Simulation and Modeling of the Behavior of Conditional Scalar Moments in Turbulent Spray Combustion, Proceedings of the Summer Program 2000, Center for Turbulence Research, Stanford University, 2000, pp. 207–218.
  • J. Urzay, D. Martinez-Ruiz, A.L. Sanchez, and F. Williams, Flamelet structures in spray ignition, in Annual Research Briefs, Center for Turbulence Research, Stanford University, 2013, pp. 107–122.
  • A. Vié, B. Franzelli, B. Fiorina, N. Darabiha, and M. Ihme, On the description of spray flame structure in the mixture fraction space, in Annual Research Briefs, Center for Turbulence Research, Stanford University, 2013, pp. 93–106.
  • H. Olguin, A. Scholtissek, S. Gonzalez, F. Gonzalez, M. Ihme, C. Hasse, and E. Gutheil, Closure of the scalar dissipation rate in the spray flamelet equations through a transport equation for the gradient of the mixture fraction, Combust. Flame 208 (2019), pp. 330–350. doi: 10.1016/j.combustflame.2019.05.033
  • D.O. Maionchi and F.F. Fachini, A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position, Combust. Theory Model. 17 (2013), pp. 522–542. doi: 10.1080/13647830.2013.781225
  • D.O. Maionchi, A simples application of the spray-flamelet approach to the simulation of biphasic and multi-component fuel with non-unity Lewis numbers, At. Sprays 27 (2017), pp. 367–382. doi: 10.1615/AtomizSpr.2017016772
  • A. Liñan, The asymptotic structure of counterflow diffusion flames for large activation energies, Acta Astronaut. 1 (1974), pp. 1007–1039. doi: 10.1016/0094-5765(74)90066-6
  • A. Liñan and F. A. Williams, Fundamental Aspects of Combustion, Oxford University Press, Oxford, 1993.
  • A. Liñan, Diffusion-controlled combustion, in Mechanics for a New Millenium, H. Aref and J.W. Philips, eds., Kluver Academic Publishers, Netherlands, 2001, pp. 487–502.
  • R. Jackson, Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid, Chem. Eng. Sci. 52 (1997), pp. 2457–2469. doi: 10.1016/S0009-2509(97)00065-1
  • C. Kleinstreuer, Two-phase Flow: Theory and Applications, Taylor and Francis, New York, NY, 2003.
  • M.R. Maxey, The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech. 174 (1987), pp. 441. doi: 10.1017/S0022112087000193
  • U. Niemann, K. Seshadri, and F.A. Williams, Accuracies of laminar counterflow flame experiments, Combust. Flame 162 (2014), pp. 1540–1549. doi: 10.1016/j.combustflame.2014.11.021
  • F.F. Fachini, An analytical solution for the quasi-steady droplet combustion, Combust. Flame 116 (1999), pp. 302–306. doi: 10.1016/S0010-2180(97)00174-0
  • X. Wang and H.D. Chiang, Application of Pseudo-Transient Continuation Method in Dynamic Stability Analysis, IEEE General Meeting Power & Energy Society Vol. abs/1402.4159, 2014.
  • D.G. Goodwin, H.K. Moffat, and R.L. Speth, Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Caltech, Pasadena, CA, 2009.
  • K. Narayanaswamy, G. Blanquart, and H. Pitsch, A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame 157(10) (2010), pp. 1879–1898. doi: 10.1016/j.combustflame.2010.07.009
  • E. Gutheil and W.A. Sirignano, Counterflow spray combustion modelling with detailed transport and detailed chemistry, Combust. Flame 113 (1998), pp. 92–105. doi: 10.1016/S0010-2180(97)00192-2
  • J.B. Greenberg, Droplet size distribution effects in an edge flame with a fuel spray, Combust. Flame 179 (2017), pp. 228–237. doi: 10.1016/j.combustflame.2017.02.002
  • H. Watanabe, R. Kurose, S.M. Hwang, and F. Akamatsu, Characteristics of flamelets in spray flames formed in a laminar counterflow, Combust. Flame 148 (2007), pp. 234–248. doi: 10.1016/j.combustflame.2006.09.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.