284
Views
2
CrossRef citations to date
0
Altmetric
Articles

PAH growth assisted by five-membered ring: pyrene formation from acenaphthylene

ORCID Icon
Pages 91-109 | Received 20 Jun 2021, Accepted 23 Sep 2021, Published online: 24 Oct 2021

References

  • W.-J. Lee, Y.-F. Wang, T.-C. Lin, Y.-Y. Chen, W.-C. Lin, C.-C. Ku, and J.-T. Cheng, PAH characteristics in the ambient air of traffic-source. Sci. Total. Environ. 159 (1995), pp. 185–200.
  • D.M. Whitacre and F.A. Gunther, Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, 2008.
  • M. Fiebig, A. Wiartalla, B. Holderbaum, and S. Kiesow, Particulate emissions from diesel engines: correlation between engine technology and emissions. J. Occup. Med. Toxicol. 9 (2014), p. 6.
  • O.P. Bhardwaj, B. Lüers, B. Heuser, B. Holderbaum, and S. Pischinger, Fuel formulation effects on the soot morphology and diesel particulate filter regeneration in a future optimized high-efficiency combustion system. Int. J. Engine Res. 18 (2017), pp. 591–605.
  • Y. Wang and S.H. Chung, Soot formation in laminar counterflow flames. Prog. Energy. Combust. Sci. 74 (2019), pp. 152–238.
  • M. Frenklach, D.W. Clary, W.C. Gardiner, and S.E. Stein, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symp. Int. Combust. 20 (1985), pp. 887–901.
  • H. Richter and J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26 (2000), pp. 565–608.
  • P. Liu, H. Lin, Y. Yang, C. Shao, B. Guan, and Z. Huang, Investigating the role of CH2 radicals in the HACA mechanism. J. Phys. Chem. A. 119 (2015), pp. 3261–3268.
  • B. Shukla, A. Miyoshi, and M. Koshi, Role of methyl radicals in the growth of PAHs. J. Am. Soc. Mass. Spectrom. 21 (2010), pp. 534–544.
  • E. Georganta, R. Rahman, A. Raj, and S. Sinha, Growth of polycyclic aromatic hydrocarbons (PAHs) by methyl radicals: pyrene formation from phenanthrene. Combust. Flame 185 (2017), pp. 129–141.
  • D.P. Porfiriev, V.N. Azyazov, and A.M. Mebel, Conversion of acenaphthalene to phenalene via methylation: A theoretical study. Combust. Flame 213 (2020), pp. 302–313.
  • A. Landera, R.I. Kaiser, and A.M. Mebel, Addition of one and two units of C2H to styrene: a theoretical study of the C10H9 and C12H9 systems and implications toward growth of polycyclic aromatic hydrocarbons at low temperatures. J. Chem. Phys. 134 (2011), p. 024302.
  • V.V. Kislov, A.I. Sadovnikov, and A.M. Mebel, Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J. Phys. Chem. A. 117 (2013), pp. 4794–4816.
  • H.-B. Zhang, D. Hou, C. Law, and X. You, The role of carbon-addition and hydrogen-migration reactions in soot Surface growth. J. Phys. Chem. A. 120 (2016), pp. 683–689.
  • M. Wei, T. Zhang, S. Li, G. Guo, and D. Zhang, Naphthalene formation pathways from phenyl radical via vinyl radical (C2H3) and vinylacetylene (C4H4): computational studies on reaction mechanisms and kinetics. Can. J. Chem. 95 (2017), pp. 816–823.
  • I. Tokmakov and M.-C. Lin, Combined quantum chemical/RRKM-ME computational study of the phenyl+ ethylene, vinyl+ benzene, and H+ styrene reactions. J. Phys. Chem. A. 108 (2004), pp. 9697–9714.
  • A. Lifshitz, C. Tamburu, and F. Dubnikova, Reactions of 1-naphthyl radicals with ethylene. Single pulse shock tube experiments, quantum chemical, transition state theory, and multiwell calculations. J. Phys. Chem. A. 112 (2008), pp. 925–933.
  • A. Raj, M.J. Al Rashidi, S.H. Chung, and S.M. Sarathy, PAH growth initiated by propargyl addition: mechanism development and computational kinetics. J. Phys. Chem. A. 118 (2014), pp. 2865–2885.
  • J. Park, I.V. Tokmakov, and M.C. Lin, Experimental and computational studies of the phenyl radical reaction with Allene. J. Phys. Chem. A. 111 (2007), pp. 6881–6889.
  • I.V. Tokmakov, J. Park, and M.C. Lin, Experimental and computational studies of the phenyl radical reaction with propyne. ChemPhysChem 6 (2005), pp. 2075–2085.
  • J. Park, G.J. Nam, I.V. Tokmakov, and M.C. Lin, Experimental and theoretical studies of the phenyl radical reaction with propene. J. Phys. Chem. A. 110 (2006), pp. 8729–8735.
  • P. Liu, Y. Zhang, Z. Li, A. Bennett, H. Lin, S.M. Sarathy, and W.L. Roberts, Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. Combust. Flame 202 (2019), pp. 276–291.
  • Q. Mao, L. Cai, R. Langer, and H. Pitsch, The role of resonance-stabilized radical chain reactions in polycyclic aromatic hydrocarbon growth: theoretical calculation and kinetic modeling. Proc. Combust. Inst. 38 (2021), pp. 1459–1466.
  • M. Baroncelli, Q. Mao, S. Galle, N. Hansen, and H. Pitsch, Role of ring-enlargement reactions in the formation of aromatic hydrocarbons. Phys. Chem. Chem. Phys. 22 (2020), pp. 4699–4714.
  • J.A. Miller and S.J. Klippenstein, The recombination of propargyl radicals and other reactions on a C6H6 potential. J. Phys. Chem. A. 107 (2003), pp. 7783–7799.
  • A.E. Long, S.S. Merchant, A.G. Vandeputte, H.-H. Carstensen, A.J. Vervust, G.B. Marin, K.M. Van Geem, and W.H. Green, Pressure dependent kinetic analysis of pathways to naphthalene from cyclopentadienyl recombination. Combust. Flame 187 (2018), pp. 247–256.
  • S. Sinha and A. Raj, Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study. Phys. Chem. Chem. Phys. 18 (2016), pp. 8120–8131.
  • V.S. Krasnoukhov, M.V. Zagidullin, I.P. Zavershinskiy, and A.M. Mebel, Formation of phenanthrene via recombination of indenyl and cyclopentadienyl radicals: a theoretical study. J. Phys. Chem. A. 124 (2020), pp. 9933–9941.
  • S. Sinha, R.K. Rahman, and A. Raj, On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl–indenyl addition. Phys. Chem. Chem. Phys. 19 (2017), pp. 19262–19278.
  • A. D’Anna and M. Sirignano, Chapter 12 – detailed kinetic mechanisms of PAH and soot formation, in Computer Aided Chemical Engineering, T. Faravelli, F. Manenti, E. Ranzi, ed., Elsevier, Amsterdam, Netherlands, 2019. pp. 647–672.
  • J. Hernández-Rojas and F. Calvo, Coarse-grained modeling of the nucleation of polycyclic aromatic hydrocarbons into soot precursors. Phys. Chem. Chem. Phys. 21 (2019), pp. 5123–5132.
  • T.S. Totton, A.J. Misquitta, and M. Kraft, A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Phys. Chem. Chem. Phys. 14 (2012), pp. 4081–4094.
  • M. Gu, F. Liu, J.-L. Consalvi, and ÖL Gülder, Effects of pressure on soot formation in laminar coflow methane/air diffusion flames doped with n-heptane and toluene between 2 and 8 atm. Proc. Combust. Inst. 38 (2021), pp. 1403–1412.
  • A. Raj, I.D.C. Prada, A.A. Amer, and S.H. Chung, A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combust. Flame 159 (2012), pp. 500–515.
  • N.A. Slavinskaya, M. Braun-Unkhoff, and P. Frank. Modelling of PAH and polyyne formation in premixed atmospheric flames C2H4/air, in editors. Konferenz CD, 2005.
  • A.S. Savchenkova, I.V. Chechet, S.G. Matveev, M. Frenklach, and A.M. Mebel, Formation of phenanthrenyl radicals via the reaction of acenaphthyl with acetylene. Proc. Combust. Inst. 38 (2021), pp. 1441–1448.
  • S.J. Harris and A.M. Weiner, Surface growth of soot particles in premixed ethylene/air flames. Combust. Sci. Technol. 31 (1983), pp. 155–167.
  • H.F. Calcote, Mechanisms of soot nucleation in flames—a critical review. Combust. Flame 42 (1981), pp. 215–242.
  • M.C. Smith, G. Liu, Z.J. Buras, T.-C. Chu, J. Yang, and W.H. Green, Direct measurement of radical-catalyzed C6H6 formation from acetylene and validation of theoretical rate coefficients for C2H3+ C2H2 and C4H5+ C2H2 reactions. J. Phys. Chem. A. 124 (2020), pp. 2871–2884.
  • X. Mercier, A. Faccinetto, S. Batut, G. Vanhove, D.K. Božanić, H.R. Hróðmarsson, G.A. Garcia, and L. Nahon, Selective identification of cyclopentaring-fused PAHs and side-substituted PAHs in a low pressure premixed sooting flame by photoelectron photoion coincidence spectroscopy. Phys. Chem. Chem. Phys. 22 (2020), pp. 15926–15944.
  • J.A. Montgomery, M.J. Frisch, J.W. Ochterski, and G.A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110 (1999), pp. 2822–2827.
  • J.A. Montgomery, M.J. Frisch, J.W. Ochterski, and G.A. Petersson, A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 112 (2000), pp. 6532–6542.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Revision D.01, Wallingford, CT, 2009.
  • S. Canneaux, F. Bohr, and E. Henon, KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results†. J. Comput. Chem. 35 (2014), pp. 82–93.
  • V. Guner, K.S. Khuong, A.G. Leach, P.S. Lee, M.D. Bartberger, and K.N. Houk, A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: the performance of ab initio, density functional, CASSCF, CASPT2, and CBS-QB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries. J. Phys. Chem. A. 107 (2003), pp. 11445–11459.
  • Q. Xiu-Juan, F. Yong, L. Lei, and G. Qing-Xiang, Assessment of performance of G3B3 and CBS-QB3 methods in calculation of bond dissociation energies. Chin. J. Chem. 23 (2005), pp. 194–199.
  • N. Sebbar, J.W. Bozzelli, H. Bockhorn, and D. Trimis, A thermochemical study on the primary oxidation of sulfur. Combust. Sci. Technol. 191 (2019), pp. 163–177.
  • Y. Lan, L. Zou, Y. Cao, and K.N. Houk, Computational methods to calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles. J. Phys. Chem. A. 115 (2011), pp. 13906–13920.
  • Y. Guan, Y. Zhang, C. Yi, and B. Yang, Understanding the initial decomposition pathways of the n-alkane/nitroalkane binary mixture. Chin. J. Chem. 31 (2013), pp. 1087–1094.
  • A. Raj, Structural effects on the growth of large polycyclic aromatic hydrocarbons by C2H2. Combust. Flame 204 (2019), pp. 331–340.
  • D. Hou and X. You, Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms. Phys. Chem. Chem. Phys. 19 (2017), pp. 30772–30780.
  • P. Liu, Z. Li, and W.L. Roberts, The growth of PAHs and soot in the post-flame region. Proc. Combust. Inst. 37 (2019), pp. 977–984.
  • P. Liu, Z. Li, and W.L. Roberts, Growth network of PAH with 5-membered ring: case study with acenaphthylene molecule. Combust. Flame 230 (2021), p. 111449.
  • A. Violi, T.N. Truong, and A.F. Sarofim, Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms. J. Phys. Chem. A. 108 (2004), pp. 4846–4852.
  • T.-C. Chu, M.C. Smith, J. Yang, M. Liu, and W.H. Green, Theoretical study on the HACA chemistry of naphthalenyl radicals and acetylene: the formation of C12H8, C14H8, and C14H10 species. Int. J. Chem. Kinet. 52 (2020), pp. 752–768.
  • Y. Gao, N.J. DeYonker, E.C. Garrett, A.K. Wilson, T.R. Cundari, and P. Marshall, Enthalpy of formation of the cyclohexadienyl radical and the C−H bond enthalpy of 1,4-cyclohexadiene: an experimental and computational re-evaluation. J. Phys. Chem. A. 113 (2009), pp. 6955–6963.
  • F. Berho, M.-T. Rayez, and R. Lesclaux, UV absorption spectrum and self-reaction kinetics of the cyclohexadienyl radical, and stability of a series of cyclohexadienyl-type radicals. J. Phys. Chem. A. 103 (1999), pp. 5501–5509.
  • Y. Carissan and W. Klopper, Hydrogen abstraction from biphenyl, acenaphthylene, naphthalene and phenanthrene by atomic hydrogen and methyl radical: DFT and G3(MP2)-RAD data. J. Mol. Struct. Theochem 940 (2010), pp. 115–118.
  • J.M. Nicovich and A.R. Ravishankara, Reaction of hydrogen atom with benzene. Kinetics and mechanism. J. Phys. Chem. 88 (1984), pp. 2534–2541.
  • M.J. Castaldi, N.M. Marinov, C.F. Melius, J. Huang, S.M. Senkan, W.J. Pit, and C.K. Westbrook, Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symp. Int. Combust. 26 (1996), pp. 693–702.
  • R.K. Rahman, S. Ibrahim, and A. Raj, Oxidative destruction of monocyclic and polycyclic aromatic hydrocarbon (PAH) contaminants in sulfur recovery units. Chem. Eng. Sci. 155 (2016), pp. 348–365.
  • N.A. Slavinskaya, U. Riedel, S.B. Dworkin, and M.J. Thomson, Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combust. Flame 159 (2012), pp. 979–995.
  • A.K. Lemmens, D.B. Rap, J.M.M. Thunnissen, B. Willemsen, and A.M. Rijs, Polycyclic aromatic hydrocarbon formation chemistry in a plasma jet revealed by IR-UV action spectroscopy. Nat. Commun. 11 (2020), p. 269.
  • A.W. Fikri and A. Raj, Growth of polycyclic aromatic hydrocarbons by C2H2 mediated by five-membered rings: acenaphthylene conversion to phenanthrene. Combust. Sci. Technol., pp. 1–27. doi:https://doi.org/10.1080/00102202.2021.1968846(2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.