264
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design of combustion experiments using differential entropy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 67-90 | Received 27 Aug 2020, Accepted 21 Sep 2021, Published online: 09 Nov 2021

References

  • M. Frenklach, Transforming data into knowledge – process informatics for combustion chemistry. Proc. Combust. Inst. 31 (2007), pp. 125–140.
  • M. Frenklach, Systematic optimization of a detailed kinetic model using a methane ignition example. Combust. Flame 58 (1984), pp. 69–72.
  • D.A. Sheen and H. Wang, Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane. Combust. Flame 158 (2011), pp. 645–656.
  • D.A. Sheen and H. Wang, The method of uncertainty quantification and minimization using polynomial chaos expansions. Combust. Flame 158 (2011), pp. 2358–2374.
  • H. Wang and D.A. Sheen, Combustion kinetic model uncertainty quantification, propagation and minimization. Prog. Energy Combust. Sci. 47 (2015), pp. 1–31.
  • T. Turányi, T. Nagy, I. Gy, M. Zsély, T.V. Cserháti, B.T. Szabó, I. Sedyó, P.T. Kiss, A. Zempléni and H.J. Curran, Determination of rate parameters based on both direct and indirect measurements. Int. J. Chem. Kinet. 44 (2012), pp. 284–302.
  • T. Varga, T. Nagy, C. Olm, I. Gy, R. Zsély, É.V. Pálvölgyi, G. Vincze, M. Cserháti, H.J. Curran and T. Turányi, Optimization of a hydrogen combustion mechanism using both direct and indirect measurements. Proc. Combust. Inst. 35 (2015), pp. 589–596.
  • T. Varga, C. Olm, T. Nagy, I. Gy. Zsély, É Valkó, R. Pálvölgyi, H.J. Curran and T. Turányi, Development of a joint hydrogen and syngas combustion mechanism based on an optimization approach. Int. J. Chem. Kinet. 48 (2016), pp. 407–422.
  • C. Olm, T. Varga, É Valkó, H.J. Curran and T. Turányi, Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism. Combust. Flame 186 (2017), pp. 45–64.
  • C. Olm, T. Varga, É Valkó, S. Hartl, C. Hasse and T. Turányi, Development of an ethanol combustion mechanism based on a hierarchical optimization approach. Int. J. Chem. Kinet. 48 (2016), pp. 423–441.
  • M. Abian, M.U. Alzueta and P. Glarborg, Formation of NO from N2/O2 mixtures in a flow reactor: toward an accurate prediction of thermal NO. Int. J. Chem. Kinet. 47 (2015), pp. 518–532.
  • N.A. Buczkó, T. Varga, I. Gy. Zsély and T. Turányi, Formation of NO in high-temperature N2/O2/H2O mixtures: Re-evaluation of rate coefficients. Energy Fuel 32 (2018), pp. 10114–10120.
  • R.K. Hanson and D.F. Davidson, Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44 (2014), pp. 103–114.
  • W. Ren, E. Dames, D. Hyland, D.F. Davidson and R.K. Hanson, Shock tube study of methanol, methyl formate pyrolysis: CH3OH and CO time-history measurements. Combust. Flame 160 (2013), pp. 2669–2679.
  • P. Zhang, S. Li, Y. Wang, W. Ji, W. Sun, B. Yang, X. He, Z. Wang, C.K. Law and F. Zhang, Measurement of reaction rate constants using RCM: a case study of decomposition of dimethyl carbonate to dimethyl ether. Combust. Flame 183 (2017), pp. 30–38.
  • S. Li, T. Tao, J. Wang, B. Yang, C.K. Law and F. Qi, Using sensitivity entropy in experimental design for uncertainty minimization of combustion kinetic models. Proc. Combust. Inst. 36 (2017), pp. 709–716.
  • C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948), pp. 379–423.
  • R. Schenkendorf, X. Xie, M. Rehbein, S. Scholl and U. Krewer, The impact of global sensitivities and design measures in model-based optimal experimental design. Processes 6 (2018), pp. 27.
  • I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Mat. Model. 2 (1990), pp. 112–118.
  • F. vom Lehn, L. Cai, and H. Pitsch, Iterative model-based experimental design for efficient uncertainty minimization of chemical mechanisms, Proc. Combust. Inst. (2020).
  • D.A. Sheen and J.A. Manion, Kinetics of the reactions of H and CH3 radicals with n-butane: an experimental design study using reaction network analysis. J. Phys. Chem. A 118 (2014), pp. 4929–4941.
  • J.R. Magnus, On the concept of matrix derivative. J. Multivar. Anal. 101 (2010), pp. 2200–2206.
  • C. Olm, I. Gy, R.P. Zsély, T. Varga, T. Nagy, H.J. Curran and T. Turányi, Comparison of the performance of several recent hydrogen combustion mechanisms. Combust. Flame 161 (2014), pp. 2219–2234.
  • C. Olm, I. Gy, T.V. Zsély, H.J. Curran and T. Turányi, Comparison of the performance of several recent syngas combustion mechanisms. Combust. Flame 162 (2015), pp. 1793–1812.
  • T. Nagy, and T. Turányi, Minimal spline fit: a model-free method for determining statistical noise of experimental data series, Proceedings of the European Combustion Meeting – 2021 Paper 336, 14–15 April, 2021, Naples, Italy.
  • M.U. Alzueta, R. Bilbao and M. Finestra, Methanol oxidation and its interaction with nitric oxide. Energy Fuel 15 (2001), pp. 724–729.
  • J.A. Miller and P. Glarborg, Modeling the thermal De-NOx process: closing in on a final solution. Int. J. Chem. Kinet. 31 (1999), pp. 757–765.
  • P. Glarborg, J.A. Miller, B. Ruscic and S.J. Klippenstein, Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67 (2018), pp. 31–68.
  • ReSpecTh information system. http://respecth.hu/.
  • T. Varga, C. Olm, M. Papp, Á. Busai, and I.G. Zsély, ReSpecTh kinetics data format specification v2.3 (2020). Available at http://respecth.chem.elte.hu/respecth/reac/ReSpecTh_Kinetics_Data_Format_Specification_v2.3.pdf.
  • T. Varga, Á. Busai, M. Papp, and I. Gy. Zsély, Optima++ v1.2: a general C++ framework for performing combustion simulations and mechanism optimization (2020). Available at http://respecth.hu/.
  • H. Pitsch, and R. Langer, FlameMaster 4.3, a computer code for homogeneous combustion and one dimensional laminar flame calculations (2019). Available at http://itv.rwth-aachen.de/.
  • A. Cuoci, A. Frassoldati, T. Faravelli and E. Ranzi, OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun. 192 (2015), pp. 237–264.
  • OpenSMOKE++. Available at https://www.opensmokepp.polimi.it/
  • J.A. Manion, R.E. Huie, R.D. Levin, D.R. Burgess Jr., V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens, V.D. Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.-Y. Lin, T.C. Allison, W.G. Mallard, F. Westley, J.T. Herron, R.F. Hampson, and D.H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.7, Data Version 2013.03, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320, 2013
  • T. Nagy, É Valkó, I. Sedyó, I.G. Zsély, M.J. Pilling and T. Turányi, Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combust. Flame 162 (2015), pp. 2059–2076.
  • M. Papp, É. Valkó, and T. Turányi, Evaluation of high-temperature gas phase rate coefficients. Available at http://k-evaluation.elte.hu/.
  • T. Nagy and T. Turányi, Uncertainty of Arrhenius parameters. Int. J. Chem. Kinet. 43 (2011), pp. 359–378.
  • T. Turányi and A.S. Tomlin, Analysis of kinetic reaction mechanisms, Springer, Heidelberg, 2014.
  • M.C. Su, S.S. Kumaran, K.P. Lim, J.V. Michael, A.F. Wagner, L.B. Harding and D.C. Fang, Rate constants, 1100≤T≤2000K, for H+NO2 → OH+NO using two shock tube techniques: comparison of theory to experiment. J. Phys. Chem. A 106 (2002), pp. 8261–8270.
  • F.M. Haas and F.L. Dryer, Rate coefficient determinations for H+NO2 → OH+NO from high pressure flow reactor measurements. J. Phys. Chem. A 119 (2015), pp. 7792–7801.
  • K.P. Shrestha, L. Seidel, T. Zeuch and F. Mauss, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides. Energy Fuels 32 (2018), pp. 10202–10217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.