260
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Kinetic study of the effect of sub-atmospheric conditions on the laminar burning velocity of high C2H6 content natural gas mixtures

, & ORCID Icon
Pages 338-364 | Received 25 Jun 2021, Accepted 24 Nov 2021, Published online: 03 Jan 2022

References

  • S. Faramawy, T. Zaki and A.A.-E.A.E. Sakr, Natural gas origin, composition, and processing: A review. J. Nat. Gas Sci. Eng 34 (2016), pp. 34–54.
  • Energy Information Administration and U.S.E.I. Administration, International Energy Outlook 2019 with projections to 2050, Washington, DC, 2019.
  • R. Amirante, E. Distaso, P. Tamburrano and R.D. Reitz, Laminar flame speed correlations for methane, ethane, propane and their mixtures, and natural gas and gasoline for spark-ignition engine simulations. Int. J. Eng. Res. 18 (2017), pp. 951–970.
  • G. Bourque, D. Healy, H. Curran, C. Zinner, D. Kalitan, J. de Vries, et al., Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. J. Eng. Gas Turbines Power 132 (2009), p. 21504.
  • J.P.L. Santos, A.K.C. Lima Lobato, C. Moraes and L.C.L. Santos, Determination of elemental sulfur deposition rates for different natural gas compositions. J. Pet. Sci. Eng 135 (2015), pp. 461–465.
  • A. Zucca, A. Forte, N. Giannini, C. Romano and R. Modi, Enlarging fuel flexibility for frame 5 DLN: Combustor operability and emissions with high C2+ content, in ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015, pp. V04BT04A016-V04BT04A016.
  • J. Runyon, Gas Turbine Fuel Flexibility: Pressurized Swirl Flame Stability, Thermoacoustics, and Emissions, Cardiff University, Cardiff, 2017.
  • S. Postic, S. Selosse and N. Maïzi, Energy contribution to Latin American INDCs: Analyzing sub-regional trends with a TIMES model. Energy Policy 101 (2017), pp. 170–184.
  • A. Galadima and O. Muraza, Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 37 (2016), pp. 1–13.
  • M.F. Chávez-Rodríguez, R. Garaffa, G. Andrade, G. Cárdenas, A. Szklo and A.F.P. Lucena, Can Bolivia keep its role as a major natural gas exporter in South America? J. Nat. Gas Sci. Eng. 33 (2016), pp. 717–730.
  • R. Weijermars, N. Sorek, D. Sen and W.B. Ayers, Eagle Ford Shale play economics: U.S. versus Mexico. J. Nat. Gas Sci. Eng. 38 (2017), pp. 345–372.
  • Nexen Inc, Colombia Nexen Explores for shale gas in Colombia, 2012,, pp. 4.
  • Shale gas: una fuente de energía segura, limpia y abundante. Bogotá, 2012.
  • G. Etiope, A. Drobniak and A. Schimmelmann, Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar. Pet. Geol 43 (2013), pp. 178–186.
  • J.G. Speight, Shale gas properties and processing, in Shale gas production processes, J.G. Speight, ed., Gulf Professional Publishing, Boston, 2013. pp. 101–119.
  • Z. Chen, C. Qin and P. Duan, Lifted flame property and interchangeability of natural gas on partially premixed gas burners, Case Studies Therm. Eng. 12 (2018), pp. 333–339.
  • M. Farzaneh-Gord, A. Niazmand, M. Deymi-Dashtebayaz and H.R. Rahbari, Effects of natural gas compositions on CNG (compressed natural gas) reciprocating compressors performance. Energy 90 (2015), pp. 1152–1162.
  • M.S. Cellek and A. Pınarbaşı, Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels. Int. J. Hydrogen Energy 43 (2018), pp. 1194–1207.
  • A. Colorado and V. McDonnell, Impact of Ethane, Propane, and Diluent Content in Natural Gas on the NOx emissions of a Commercial Microturbine Generator, in 8th US National Combustion Meeting, 2013.
  • R.L. Hack and V.G. McDonell, Impact of ethane, propane, and diluent content in natural gas on the performance of a commercial microturbine generator. J. Eng. Gas Turbines Power 130 (2008), p. 011509.
  • C. Serrano, J.J. Hernández, C. Mandilas, C.G.W. Sheppard and R. Woolley, Laminar burning behaviour of biomass gasification-derived producer gas. Int. J. Hydrogen Energy 33 (2008), pp. 851–862.
  • H.J. Burbano, J. Pareja and A.A. Amell, Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. Int. J. Hydrogen Energy 36 (2011), pp. 3232–3242.
  • J.J. Hernandez, C. Serrano and J. Perez, Prediction of the autoignition delay time of producer gas from biomass gasification. Energy Fuels 20 (2006), pp. 532–539.
  • E.J.K. Nilsson, A. van Sprang, J. Larfeldt and A.A. Konnov, The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane. Fuel 189 (2017), pp. 369–376.
  • P. Dirrenberger, H. Le Gall, R. Bounaceur, O. Herbinet, P.-A. Glaude, A. Konnov, et al., Measurements of laminar flame velocity for components of natural Gas. Energy Fuels 25 (2011), pp. 3875–3884.
  • R. Amirante, E. Distaso, P. Tamburrano and R.D. Reitz, Analytical correlations for modeling the laminar flame speed of natural Gas surrogate mixtures. Energy Procedia 126 (2017), pp. 850–857.
  • K. Kuppa, A. Goldmann, T. Schöffler and F. Dinkelacker, Laminar flame properties of C1-C3 alkanes/hydrogen blends at gas engine conditions. Fuel 224 (2018), pp. 32–46.
  • S. Verhelst, C. T′Joen, J. Vancoillie and J. Demuynck, A correlation for the laminar burning velocity for use in hydrogen spark ignition engine simulation. Int J Hydrogen Energy 36 (2011), pp. 957–974.
  • L.-K. Tseng, M.A. Ismail and G.M. Faeth, Laminar burning velocities and Markstein numbers of hydrocarbon/air flames. Combust. Flame 95 (1993), pp. 410–426.
  • J.M. Bergthorson and P.E. Dimotakis, Premixed laminar C1-C2 stagnation flames: Experiments and simulations with detailed thermochemistry models. Proc. Combust. Inst. 31(I) (2007), pp. 1139–1147.
  • Y. Kochar, T. Lieuwen and J. Seitzman, Laminar flame speeds of C1-C3 alkanes at elevated pressure and temperature with dilution, in 6th US National Combustion Meeting, 2009.
  • Y. Jiang, G. Li, H. Li, L. Li, L. Tian and H. Huang, Experimental and numerical study on the combustion characteristics of propane/air laminar premixed flame at elevated pressure. Energy Fuels 32(9) (2018), pp. 9898–9907.
  • D. Bradley, M. Lawes and M.E. Morsy, Flame speed and particle image velocimetry measurements of laminar burning velocities and Markstein numbers of some hydrocarbons. Fuel 243 (2019), pp. 423–432.
  • F. Ren, H. Chu, L. Xiang, W. Han and M. Gu, Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas. J. Energy Inst. 92 (2019), pp. 1178–1190.
  • C.M. Vagelopoulos and F.N. Egolfopoulos, Direct experimental determination of laminar flame speeds. Symp. Combust. 27 (1998), pp. 513–519.
  • K.J. Bosschaart and L.P.H. de Goey, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 136 (2004), pp. 261–269.
  • G. Jomaas, X.L.L. Zheng, D.L.L. Zhu and C.K.K. Law, Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures. Proc. Combust. Inst. 30 (2005), pp. 193–200.
  • M. Goswami, S.C.R. Derks, K. Coumans, W.J. Slikker, M.H. de Andrade Oliveira, R.J.M. Bastiaans, et al., The effect of elevated pressures on the laminar burning velocity of methane+air mixtures. Combust. Flame 160 (2013), pp. 1627–1635.
  • M. Goswami, R.J.M. Bastiaans, L.P.H. de Goey and A.A. Konnov, Experimental and modelling study of the effect of elevated pressure on ethane and propane flames. Fuel 166 (2016), pp. 410–418.
  • C. Xiouris, T. Ye, J. Jayachandran and F.N. Egolfopoulos, Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments. Combust. Flame 163 (2016), pp. 270–283.
  • S. Wang, Z. Wang, Y. He, X. Han, Z. Sun, Y. Zhu, et al., Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel 259 (2020), p. 116152.
  • R.J. Varghese, H. Kolekar, V.R. Kishore and S. Kumar, Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel 257 (2019), p. 116120.
  • J. Beeckmann, L. Cai and H. Pitsch, Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel 117 (2014), pp. 340–350.
  • V. Ratna Kishore, N. Duhan, M.R. Ravi and A. Ray, Measurement of adiabatic burning velocity in natural gas-like mixtures. Exp. Therm. Fluid Sci. 33 (2008), pp. 10–16.
  • S. Ravi, T.G. Sikes, A. Morones, C.L. Keesee and E.L. Petersen, Comparative study on the laminar flame speed enhancement of methane with ethane and ethylene addition. Proc. Combust. Inst. 35 (2015), pp. 679–686.
  • A.R. Khan, M.R. Ravi and A. Ray, Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends. Int. J. Hydrogen Energy 44 (2019), pp. 1192–1212.
  • A.R. Khan, M.R. Ravi and A. Ray, Experimental and numerical study of the effect of higher hydrocarbon content on laminar burning velocity and flame stability of natural gas. Combust. Sci. Technol. 192(2) (2019), pp. 1–32.
  • S. de Ferrières, A. El Bakali, B. Lefort, M. Montero and J.F. Pauwels, Experimental and numerical investigation of low-pressure laminar premixed synthetic natural gas/O2/N2 and natural gas/H2/O2/N2 flames. Combust. Flame 154 (2008), pp. 601–623.
  • A. Movaghar, R. Lawson and F.N. Egolfopoulos, Confined spherically expanding flame method for measuring laminar flame speeds: Revisiting the assumptions and application to C1C4 hydrocarbon flames. Combust. Flame 212 (2020), pp. 79–92.
  • Alexander A. Konnov, Akram Mohammad, Velamati Ratna Kishore, Nam II Kim, Chockalingam Prathap, and Sudarshan KumarA Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel + Air MixturesProgress in Energy and Combustion Science 68 (2018), pp. 197–267.
  • B. Zhang, G. Xiu and C. Bai, Explosion characteristics of argon/nitrogen diluted natural gas–air mixtures. Fuel 124 (2014), pp. 125–132.
  • T. Hiraoka, K. Ohnuki, H. Fujii, K. Fukuda and Y. Hoshijima, Burning characteristic of LNG-oxygen mixed gas used for vacuum degassing process. Steel Res. Int. 74 (2003), pp. 469–473.
  • K.J. Bosschaart and L.P.H. De Goey, Extension of the heat flux method to subatmospheric pressures. Combust. Sci. Technol. 176 (2004), pp. 1537–1564.
  • A.A. Konnov, R. Riemeijer and L.P.H. de Goey, Adiabatic laminar burning velocities of CH4 + H2 + air flames at low pressures. Fuel 89 (2010), pp. 1392–1396.
  • R.R. Burrell, D.J. Lee and F.N. Egolfopoulos, Propagation and extinction of subatmospheric counterflow methane flames. Combust. Flame 195 (2018), pp. 117–127.
  • A.A. Amell, H.A. Yepes and F.J. Cadavid, Numerical and experimental study on laminar burning velocity of syngas produced from biomass gasification in sub-atmospheric pressures. Int. J. Hydrogen Energy 39 (2014), pp. 8797–8802.
  • M. Kuznetsov, S. Kobelt, J. Grune and T. Jordan, Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures. Int. J. Hydrogen Energy 37 (2012), pp. 17580–17588.
  • M. Mitu, V. Giurcan, D. Razus and D. Oancea, Inert gas influence on the laminar burning velocity of methane-air mixtures. J. Hazard. Mater. 321 (2017), pp. 440–448.
  • M. Reyes, F.V. Tinaut, A. Horrillo and A. Lafuente, Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130 (2018), pp. 684–697.
  • F.N. Egolfopoulos, D.L. Zhu and C.K. Law, Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen. Symp. Combust. 23 (1991), pp. 471–478.
  • M.I. Hassan, K.T. Aung, O.C. Kwon and G.M. Faeth, Properties of laminar premixed hydrocarbon/air flames at various pressures. J. Propuls. Power 14 (1998), pp. 479–488.
  • V. Giurcan, D. Razus, M. Mitu and D. Oancea, Numerical study of the laminar flame propagation in ethane-air mixtures. Cent. Eur. J. Chem. 12 (2014), pp. 391–402.
  • M. Mitu, D. Razus, V. Giurcan and D. Oancea, Experimental and numerical study of laminar burning velocity of ethane–air mixtures of variable initial composition, temperature and pressure. Energy Fuels 28 (2014), pp. 2179–2188.
  • M. Mitu, D. Razus, V. Giurcan and D. Oancea, Normal burning velocity and propagation speed of ethane–air: Pressure and temperature dependence. Fuel 147 (2015), pp. 27–34.
  • H.J. Burbano, J. Pareja and A.A. Amell, Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures. Int. J. Hydrogen Energy 36 (2011), pp. 3243–3252.
  • A.A. Amell, Influence of altitude on the height of blue cone in a premixed flame. Appl. Therm. Eng. 27 (2007), pp. 408–412.
  • W. Lowry, J. de Vries, M. Krejci, E. Petersen, Z. Serinyel, W. Metcalfe, et al., Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures. J. Eng. Gas Turbines Power 133 (2011), p. 091501.
  • J.J. Hernández, M. Lapuerta and J. Sanz-Argent, Autoignition prediction capability of the Livengood–Wu correlation applied to fuels of commercial interest. Int. J. Eng. Res. 15 (2014), pp. 817–829.
  • F. Deng, Y. Pan, W. Sun, F. Yang, Y. Zhang and Z. Huang, An ignition delay time and chemical kinetic study of ethane sensitized by nitrogen dioxide. Fuel 207 (2017), pp. 389–401.
  • L.D. Thi, Y. Zhang and Z. Huang, Shock tube study on ignition delay of multi-component syngas mixtures – Effect of equivalence ratio. Int. J. Hydrogen Energy 39 (2014), pp. 6034–6043.
  • C. Echeverri-Uribe, A.A. Amell, L.M. Rubio-Gaviria, A. Colorado and V. Mcdonell, Numerical and experimental analysis of the effect of adding water electrolysis products on the laminar burning velocity and stability of lean premixed methane/air flames at sub-atmospheric pressures. Fuel 180 (2016), pp. 565–573.
  • A. Cardona and A. Amell, Laminar burning velocity and interchangeability analysis of biogas / C 3 H 8 / H 2 with normal and oxygen-enriched air. Int. J. Hydrogen Energy 8 (2013), pp. 3–10.
  • Z. Qin, V.V. Lissianski, H. Yang, W.C. Gardiner, S.G. Davis and H. Wang, Combustion chemistry of propane: A case study of detailed reaction mechanism optimization. Proc. Combust. Inst. 28 (2000), pp. 1663–1669.
  • University of California at San Diego, Chemical-kinetic mechanisms for combustion applications. Available at http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
  • D. Sharma, S. Mahapatra, S. Garnayak, V.K. Arghode, A. Bandopadhyay, S.K. Dash, et al., Development of the reduced chemical kinetic mechanism for combustion of H 2 / CO / C 1 − C 4 hydrocarbons. Energy Fuels 35(1) (2021), pp. 718–742.
  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., and Qin, Z., http://www.me.berkeley.edu/gri_mech/.
  • A.N. Mazas, B. Fiorina, D.A. Lacoste and T. Schuller, Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame 158 (2011), pp. 2428–2440.
  • J. Oh and D. Noh, Laminar burning velocity of oxy-methane flames in atmospheric condition. Energy 45 (2012), pp. 669–675.
  • C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, 2006.
  • Y. Wu, V. Modica, B. Rossow and F. Grisch, Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures. Fuel 185 (2016), pp. 577–588.
  • E. Albin, H. Nawroth, S. Göke, Y. D’Angelo and C.O. Paschereit, Experimental investigation of burning velocities of ultra-wet methane–air–steam mixtures. Fuel Process. Technol 107 (2013), pp. 27–35.
  • W. Li, Y. Jiang, Y. Jin and X. Zhu, Investigation of the influence of DMMP on the laminar burning velocity of methane/air premixed flames. Fuel 235 (2019), pp. 1294–1300.
  • X. Hu and Q. Yu, Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures. Energy 147 (2018), pp. 876–883.
  • W. Xu and Y. Jiang, Combustion inhibition of aluminum–methane–air flames by fine NaCl particles. Energies 11 (2018), p. 3147.
  • J. Pareja, H.J. Burbano and Y. Ogami, Measurements of the laminar burning velocity of hydrogen–air premixed flames. Int. J. Hydrogen Energy 35 (2010), pp. 1812–1818.
  • L.F. Londoñó, C.E. Lopez and F. Cadavid, Determinación de la velocidad de deflagración laminar empleando el método del cono y la emisión espontánea de CH en llamas metano –aire Luis Fernando Londoñó, V Simp. Int. BIOFÁBRICAS. I Congr. Int. FLUJOS React. (2011), pp. 2–4.
  • S. Yu, X.S. Bai, B. Zhou, Z. Wang, Z.S. Li and M. Aldén, Numerical studies of the pilot flame effect on a piloted jet flame. Combust. Sci. Technol. (2019), pp. 1–14.
  • S. Hu, J. Gao, C. Gong, Y. Zhou, X.S. Bai, Z.S. Li, et al., Assessment of uncertainties of laminar flame speed of premixed flames as determined using a Bunsen burner at varying pressures. Appl. Energy 227 (2018), pp. 149–158.
  • T. Boushaki, Y. Dhué, L. Selle, B. Ferret and T. Poinsot, Effects of hydrogen and steam addition on laminar burning velocity of methane-air premixed flame: Experimental and numerical analysis. Int. J. Hydrogen Energy 37 (2012), pp. 9412–9422.
  • J. Fu, C. Tang, W. Jin, L.D. Thi, Z. Huang and Y. Zhang, Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. Int. J. Hydrogen Energy 38 (2013), pp. 1636–1643.
  • N. Bouvet, C. Chauveau, I. Gökalp, S.Y. Lee and R.J. Santoro, Characterization of syngas laminar flames using the Bunsen burner configuration. Int. J. Hydrogen Energy 36 (2011), pp. 992–1005.
  • X. Han, Z. Wang, S. Wang, R. Whiddon, Y. He, Y. Lv, et al., Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames. Fuel 239 (2019), pp. 1028–1037.
  • M. Faghih, Z. Chen, J. Huo, Z. Ren and C.K. Law, On the determination of laminar flame speed from low-pressure and super-adiabatic propagating spherical flames. Proc. Combust. Inst. 37 (2019), pp. 1505–1512.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed., Edwards, Philadelphia, 2005.
  • M. Faghih and Z. Chen, The constant-volume propagating spherical flame method for laminar flame speed measurement. Sci. Bull 61 (2016), pp. 1296–1310.
  • A. Omari and L. Tartakovsky, Measurement of the laminar burning velocity using the confined and unconfined spherical flame methods – A comparative analysis. Combust. Flame 168 (2016), pp. 127–137.
  • S.Y. Liao, D.M. Jiang and Q. Cheng, Determination of laminar burning velocities for natural gas. Fuel 83 (2004), pp. 1247–1250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.